转载请标明出处:牟尼的专栏 http://blog.csdn.net/u012027907
Problem1:
题目描述:
定义一个新的斐波那契数列:
F(0)=7;
F(1)=11;
F(n)=F(n-1)+F(n-2);(n>=2)
输入:
输入有多组;首先输入一个N(N<=100),代表要输入的测试用例的个数;接下来输入N个数字ni(ni<=100),数字间用空格隔开。
输出:
求F(n)能否被3整除,若能整除输出‘yes’,否则输出‘no’。
样例输入:
3 0 1 2
样例输出:
no
no
yes
提示:不能用递归,否则超时!在计算时,我们没必要算出递推的真正值,后面会越来越大,可能Int 都存不下了!题目只要求算是否是3的倍数,也就是说,不管值多大,最后都只是 3n+0,3n+1,3n+2 这三种情况,我们只需对3取余即可。
/*
* 描述: 新的斐波那契数列
* 作者: 张亚超
* 博客: 牟尼的专栏 http://blog.csdn.net/u012027907
* 日期: 2014/8/24
*/
#include<stdio.h>
#define N 105
int F[N]; // 记录递推数对3取余的余数
int I[N]; // 记录输入的n个值
bool mark[N]; //标记对应数是否是3的余数
int main(){
F[0] = 7;
F[1] = 11;
for(int i = 0; i < N; i++) //标记初始化为false
mark[i] = false;
for(i = 2; i < N; i++){ //计算递推数对3取余的余数
F[i] = F[i-1] + F[i-2];
if(F[i] % 3 == 0) //若为3的倍数,标记
mark[i] = true;
F[i] %= 3; //重要一步,简化运算,只存对3的余数
}
int n;
while(scanf("%d",&n) != EOF){
for(int i = 0; i < n; i++){ //输入
scanf("%d",&I[i]);
}
for( i = 0; i < n; i++){ //输出
if(mark[I[i]])
printf("yes\n");
else
printf("no\n");
}
}
return 0;
}
转载请标明出处:牟尼的专栏 http://blog.csdn.net/u012027907