模型的属性与功能
上次学了 Sklearn 中的 data sets,今天来看 Model 的属性和功能。
这里以 LinearRegressor 为例,所以先导入包,数据,还有模型。
model.fit 和 model.predict 就属于 Model 的功能,用来训练模型,用训练好的模型预测。
然后,model.coef_ 和 model.intercept_ 属于 Model 的属性, 例如对于 LinearRegressor 这个模型,这两个属性分别输出模型的斜率和截距(与y轴的交点)。
model.get_params() 也是功能,它可以取出之前定义的参数。
model.score(data_X, data_y) 它可以对 Model 用 R^2 的方式进行打分,输出精确度。
# 导入满满的数据库
from sklearn import datasets
# 导入 线性回归 方法
from sklearn.linear_model import LinearRegression
# 导入波士顿房价数据
loaded_data = datasets.load_boston()
data_X = loaded_data.data
d