model.score()
在不同的机器学习库中(如 Scikit-Learn)通常是用来计算模型在测试集上的性能评估指标,比如 R² 分数、准确率等。这个方法大多数情况下只处理一维目标变量(例如,回归任务的连续值或分类任务的离散标签)。
对于多维度目标变量的处理:
- 多目标回归:
- 在回归任务中,如果你的目标变量是多维的(即一个样本对应多个输出),Sklearn 的标准
model.score()
方法不直接支持多目标回归。 - 对于这种情况,可以使用
multioutput
评估指标,如mean_squared_error
、r2_score
等,手动计算每个目标变量的分数。
- 多分类问题:
- 如果你的任务是多分类(多类别的分类问题),
model.score()
方法可以使用,返回模型在测试集上的准确率。 - 你也可以使用其他分类指标,如
f1_score
、precision_score
和recall_score
,来分别评估模型在每个类上的表现。
小结
model.score()
通常只支持一维目标变量,处理多维目标时需要使用其他的评估方法。- 评估多维目标值的模型时,你可以分别评估每个维度,或者通过合适的方法来综合多个目标的评估结果