若想使用莫比乌斯反演,熟练掌握狄利克雷卷积包括定义、记号以及相关的性质、证明等是非常有好处的。
数论函数与积性函数
数论函数也称作算术函数,就是定义在正整数上的函数,也可看作是一个数列。例如:
f
(
n
)
=
2
n
−
1
f(n)=2n-1
f(n)=2n−1
就表示了一个数论函数,其实就是:
[
1
,
3
,
5
,
7
,
9
,
.
.
.
]
[1,3,5,7,9,...]
[1,3,5,7,9,...]
跟狄利克雷卷积有关的常见数论函数有:
全1函数
u
u
u:
u
(
n
)
=
1
u(n)=1
u(n)=1
即:
[
1
,
1
,
1
,
1
,
1
,
.
.
.
]
[1,1,1,1,1,...]
[1,1,1,1,1,...]
恒等函数
I
D
ID
ID:
I
D
(
n
)
=
n
ID(n)=n
ID(n)=n
即:
[
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
.
.
.
]
[1,2,3,4,5,6,7,8,9,10,...]
[1,2,3,4,5,6,7,8,9,10,...]
单位元函数
e
e
e:
e
(
n
)
=
{
1
n
=
1
0
其
他
e(n)=\begin{cases} 1 & n=1 \\ 0 & 其他 \end{cases}
e(n)={10n=1其他
即:
[
1
,
0
,
0
,
0
,
0
,
.
.
.
]
[1,0,0,0,0,...]
[1,0,0,0,0,...]
积性函数是指如果某个数论函数
f
(
n
)
f(n)
f(n)满足当
g
c
d
(
a
,
b
)
=
1
gcd(a,b)=1
gcd(a,b)=1时有
f
(
a
⋅
b
)
=
f
(
a
)
⋅
f
(
b
)
f(a\cdot b)=f(a)\cdot f(b)
f(a⋅b)=f(a)⋅f(b)成立,则称函数
f
f
f为积性函数。以下提到的函数都是积性函数。
狄利克雷卷积
狄利克雷卷积是对2个数论函数的操作,定义如下:
h
(
n
)
=
f
(
n
)
∘
g
(
n
)
=
∑
i
j
=
n
f
(
i
)
⋅
g
(
j
)
h(n)=f(n)\circ g(n)=\sum_{ij=n}f(i)\cdot g(j)
h(n)=f(n)∘g(n)=ij=n∑f(i)⋅g(j)
2个数论函数的狄利克雷卷积仍然是一个数论函数。
例如,考虑全1函数与恒等函数的狄利克雷卷积(只取前10个),设之为
σ
\sigma
σ,得到:
σ ( 1 ) = u ( 1 ) ⋅ I D ( 1 ) = 1 \sigma(1)=u(1)\cdot ID(1)=1 σ(1)=u(1)⋅ID(1)=1 |
σ ( 2 ) = u ( 1 ) ⋅ I D ( 2 ) + u ( 2 ) ⋅ I D ( 1 ) = 3 \sigma(2)=u(1)\cdot ID(2)+u(2)\cdot ID(1)=3 σ(2)=u(1)⋅ID(2)+u(2)⋅ID(1)=3 |
σ ( 3 ) = u ( 1 ) ⋅ I D ( 3 ) + u ( 3 ) ⋅ I D ( 1 ) = 4 \sigma(3)=u(1)\cdot ID(3)+u(3)\cdot ID(1)=4 σ(3)=u(1)⋅ID(3)+u(3)⋅ID(1)=4 |
σ ( 4 ) = u ( 1 ) ⋅ I D ( 4 ) + u ( 2 ) ⋅ I D ( 2 ) + u ( 4 ) ⋅ I D ( 1 ) = 7 \sigma(4)=u(1)\cdot ID(4)+u(2)\cdot ID(2)+u(4)\cdot ID(1)=7 σ(4)=u(1)⋅ID(4)+u(2)⋅ID(2)+u(4)⋅ID(1)=7 |
σ ( 5 ) = u ( 1 ) ⋅ I D ( 5 ) + u ( 5 ) ⋅ I D ( 1 ) = 6 \sigma(5)=u(1)\cdot ID(5)+u(5)\cdot ID(1)=6 σ(5)=u(1)⋅ID(5)+u(5)⋅ID(1)=6 |
σ ( 6 ) = u ( 1 ) ⋅ I D ( 6 ) + u ( 2 ) ⋅ I D ( 3 ) + u ( 3 ) ⋅ I D ( 2 ) + u ( 6 ) ⋅ I D ( 1 ) = 12 \sigma(6)=u(1)\cdot ID(6)+u(2)\cdot ID(3)+u(3)\cdot ID(2)+u(6)\cdot ID(1)=12 σ(6)=u(1)⋅ID(6)+u(2)⋅ID(3)+u(3)⋅ID(2)+u(6)⋅ID(1)=12 |
σ ( 7 ) = u ( 1 ) ⋅ I D ( 7 ) + u ( 7 ) ⋅ I D ( 1 ) = 8 \sigma(7)=u(1)\cdot ID(7)+u(7)\cdot ID(1)=8 σ(7)=u(1)⋅ID(7)+u(7)⋅ID(1)=8 |
σ ( 8 ) = u ( 1 ) ⋅ I D ( 8 ) + u ( 2 ) ⋅ I D ( 4 ) + u ( 4 ) ⋅ I D ( 2 ) + u ( 8 ) ⋅ I D ( 1 ) = 15 \sigma(8)=u(1)\cdot ID(8)+u(2)\cdot ID(4)+u(4)\cdot ID(2)+u(8)\cdot ID(1)=15 σ(8)=u(1)⋅ID(8)+u(2)⋅ID(4)+u(4)⋅ID(2)+u(8)⋅ID(1)=15 |
σ ( 9 ) = u ( 1 ) ⋅ I D ( 9 ) + u ( 3 ) ⋅ I D ( 3 ) + u ( 9 ) ⋅ I D ( 1 ) = 13 \sigma(9)=u(1)\cdot ID(9)+u(3)\cdot ID(3)+u(9)\cdot ID(1)=13 σ(9)=u(1)⋅ID(9)+u(3)⋅ID(3)+u(9)⋅ID(1)=13 |
σ ( 10 ) = u ( 1 ) ⋅ I D ( 10 ) + u ( 2 ) ⋅ I D ( 5 ) + u ( 5 ) ⋅ I D ( 2 ) + u ( 10 ) ⋅ I D ( 1 ) = 18 \sigma(10)=u(1)\cdot ID(10)+u(2)\cdot ID(5)+u(5)\cdot ID(2)+u(10)\cdot ID(1)=18 σ(10)=u(1)⋅ID(10)+u(2)⋅ID(5)+u(5)⋅ID(2)+u(10)⋅ID(1)=18 |
实际上,
σ
(
n
)
\sigma(n)
σ(n)就是n的因子和,因此全1函数与恒等函数的狄利克雷卷积就是因子和函数。
再考虑前面提到的单位元函数
e
e
e,稍加推理可知:
f
(
n
)
∘
e
(
n
)
=
f
(
n
)
f(n)\circ e(n)=f(n)
f(n)∘e(n)=f(n)
即,任意函数与单位元函数做卷积仍然得到自身,因此
e
e
e称为单位元。
莫比乌斯函数
实际上,所有的数论函数与狄利克雷卷积操作可以构成一个群,因此对每一个数论函数必然有逆元存在。也就是说每一个函数与其逆元的狄利克雷卷积可以得到单位元函数。全1函数的逆元称为莫比乌斯函数
μ
\mu
μ,即:
u
∘
μ
=
e
u\circ\mu=e
u∘μ=e
莫比乌斯函数就是全1函数的逆元,这个定义有助于后续的证明和计算,同时也可以依次推出莫比乌斯函数的每一个具体取值。当然,还有一个分段函数的表达,可以更直观的计算莫比乌斯函数的值:
μ
(
n
)
=
{
(
−
1
)
k
n
=
p
1
p
2
.
.
.
p
k
0
其
他
\mu(n)=\begin{cases} (-1)^k & n=p_1p_2...p_k \\ 0 & 其他 \end{cases}
μ(n)={(−1)k0n=p1p2...pk其他
也就是莫比乌斯函数只有三个可能的取值:0、-1和1。如果
n
n
n包含平方数的因子,则
μ
(
n
)
=
0
\mu(n)=0
μ(n)=0;否则,
n
n
n的质因子分解的所有质因子指数必然全是1,此时,
n
n
n有偶数个质因子
μ
(
n
)
=
1
\mu(n)=1
μ(n)=1,奇数个质因子则是
μ
(
n
)
=
−
1
\mu(n)=-1
μ(n)=−1。
相关性质
性质1:全1函数的狄利克雷卷积就是因子数量函数,记作
τ
\tau
τ;恒等函数与全1函数的狄利克雷卷积就是因子和函数,记作
σ
\sigma
σ。
τ
(
n
)
=
u
(
n
)
∘
u
(
n
)
\tau(n)=u(n)\circ u(n)
τ(n)=u(n)∘u(n)
σ
(
n
)
=
I
D
(
n
)
∘
u
(
n
)
\sigma(n)=ID(n)\circ u(n)
σ(n)=ID(n)∘u(n)
利用狄利克雷卷积的定义很容易证明。
性质2:当n不等于1时,其所有因子的莫比乌斯函数函数值之和为0;当n等于1时,其和为1。写成数学表达为:
∑
d
∣
n
μ
(
d
)
=
[
n
=
=
1
]
\sum_{d|n}\mu(d)=[n==1]
d∣n∑μ(d)=[n==1]
其中“
[
条
件
]
[条件]
[条件]”表示示性函数,条件为真则该函数值为1,否则函数值为0。这个也很容易证明,左边就是全1函数与莫比乌斯函数的卷积,右边就是单位元函数。这两者就是相等的。
性质3:恒等函数与莫比乌斯函数的卷积等于欧拉函数。其中,欧拉函数记作
φ
(
n
)
\varphi(n)
φ(n),表示不超过n的与n互质的数的数量。即:
I
D
(
n
)
∘
μ
(
n
)
=
∑
d
∣
n
d
⋅
μ
(
n
d
)
=
φ
(
n
)
ID(n)\circ \mu(n)=\sum_{d|n}{d\cdot{\mu(\frac{n}{d})}}=\varphi(n)
ID(n)∘μ(n)=d∣n∑d⋅μ(dn)=φ(n)
如果能够熟练使用各种记号,上式很容易证明。首先将
φ
(
n
)
\varphi(n)
φ(n)写作:
φ
(
n
)
=
∑
i
[
g
c
d
(
i
,
n
)
=
=
1
]
\varphi(n)=\sum_{i}[gcd(i,n)==1]
φ(n)=i∑[gcd(i,n)==1]
这是显然的,就是欧拉函数的定义。然后利用上面的第2条性质,
∑
i
[
g
c
d
(
i
,
n
)
=
=
1
]
=
∑
i
∑
d
∣
g
c
d
(
i
,
n
)
μ
(
d
)
\sum_{i}[gcd(i,n)==1]=\sum_{i}\sum_{d|gcd(i,n)}\mu(d)
i∑[gcd(i,n)==1]=i∑d∣gcd(i,n)∑μ(d)
对等式右边而言,对每一个d(d是gcd(i,n)的因子,当然同时也是n和i的因子),实际上就是问在1~n中有多少数满足其有d的因子,这个数量当然就是
n
/
d
n/d
n/d个。所以,
∑
i
∑
d
∣
g
c
d
(
i
,
n
)
μ
(
d
)
=
∑
d
∣
n
n
d
⋅
μ
(
d
)
\sum_{i}\sum_{d|gcd(i,n)}\mu(d)=\sum_{d|n}\frac{n}{d}\cdot\mu(d)
i∑d∣gcd(i,n)∑μ(d)=d∣n∑dn⋅μ(d)
该性质的一个推论是:
φ
(
n
)
n
=
∑
d
∣
n
μ
(
d
)
d
\frac{\varphi(n)}{n}=\sum_{d|n}\frac{\mu(d)}{d}
nφ(n)=d∣n∑dμ(d)
使用积性函数的性质也可以证明这一点。
当
n
=
1
n=1
n=1时,上述等式显然成立。当
n
n
n为质数时,记作
p
p
p,则:
∑
d
∣
p
μ
(
d
)
d
=
μ
(
1
)
1
+
μ
(
p
)
p
=
1
−
p
p
=
φ
(
p
)
p
\sum_{d|p}\frac{\mu(d)}{d}=\frac{\mu(1)}{1}+\frac{\mu(p)}{p}=\frac{1-p}{p}=\frac{\varphi(p)}{p}
d∣p∑dμ(d)=1μ(1)+pμ(p)=p1−p=pφ(p)
等式也成立。当
n
=
p
k
n=p^k
n=pk时,
∑
d
∣
p
k
μ
(
d
)
d
=
μ
(
1
)
1
+
μ
(
p
)
p
+
μ
(
p
2
)
p
2
+
⋅
⋅
⋅
=
1
−
p
p
=
φ
(
p
k
)
p
k
\sum_{d|p^k}\frac{\mu(d)}{d}=\frac{\mu(1)}{1}+\frac{\mu(p)}{p}+\frac{\mu(p^2)}{p^2}+\cdot\cdot\cdot=\frac{1-p}{p}=\frac{\varphi(p^k)}{p^k}
d∣pk∑dμ(d)=1μ(1)+pμ(p)+p2μ(p2)+⋅⋅⋅=p1−p=pkφ(pk)
等式亦成立。所以在
n
n
n只含一个质因子情况下,
I
D
(
n
)
∘
μ
(
n
)
=
φ
(
n
)
ID(n)\circ\mu(n)=\varphi(n)
ID(n)∘μ(n)=φ(n)是成立的。考虑更一般的情况,
n
=
p
1
k
1
⋅
⋅
⋅
p
n
k
n
n=p_{1}^{k_1}\cdot\cdot\cdot p_{n}^{k_n}
n=p1k1⋅⋅⋅pnkn,有
I
D
(
n
)
∘
μ
(
n
)
=
I
D
(
p
1
k
1
⋅
⋅
⋅
p
n
k
n
)
∘
μ
(
p
1
k
1
⋅
⋅
⋅
p
n
k
n
)
=
I
D
(
p
1
k
1
)
∘
μ
(
p
1
k
1
)
⋅
⋅
⋅
I
D
(
p
n
k
n
)
∘
μ
(
p
n
k
n
)
=
1
−
p
1
p
1
⋅
⋅
⋅
1
−
p
n
p
n
=
φ
(
n
)
ID(n)\circ\mu(n)\\=ID(p_{1}^{k_1}\cdot\cdot\cdot p_{n}^{k_n})\circ\mu(p_{1}^{k_1}\cdot\cdot\cdot p_{n}^{k_n})\\=ID(p_{1}^{k_1})\circ\mu(p_{1}^{k_1})\cdot\cdot\cdot ID(p_{n}^{k_n})\circ\mu(p_{n}^{k_n})\\=\frac{1-p_1}{p_1}\cdot\cdot\cdot\frac{1-p_n}{p_n}\\=\varphi(n)
ID(n)∘μ(n)=ID(p1k1⋅⋅⋅pnkn)∘μ(p1k1⋅⋅⋅pnkn)=ID(p1k1)∘μ(p1k1)⋅⋅⋅ID(pnkn)∘μ(pnkn)=p11−p1⋅⋅⋅pn1−pn=φ(n)
性质4:莫比乌斯反演,设函数
f
(
n
)
=
∑
d
∣
n
g
(
d
)
,
则
g
(
n
)
=
∑
d
∣
n
f
(
n
/
d
)
⋅
μ
(
d
)
f(n)=\sum_{d|n}{g(d)},则g(n)=\sum_{d|n}{f(n/d)\cdot\mu(d)}
f(n)=∑d∣ng(d),则g(n)=∑d∣nf(n/d)⋅μ(d)。
使用狄利克雷卷积记号很容易证明这个结论,已知条件实际上就是
f
=
u
∘
g
f=u\circ g
f=u∘g
两边同时卷积莫比乌斯函数,注意到狄利克雷卷积满足交换律与结合律,且全1函数与莫比乌斯函数的卷积结果为单位元函数,所以
g
=
f
∘
μ
g=f\circ\mu
g=f∘μ
这就是莫比乌斯反演的结论。
性质5:莫比乌斯倍数反演,莫比乌斯反演有两种形式,性质4中的是约数反演,还有一种倍数反演,如下,若有
f
(
n
)
=
∑
n
∣
d
,
d
≤
N
g
(
d
)
f(n)=\sum_{n|d,d\le N}g(d)
f(n)=n∣d,d≤N∑g(d)
则有
g
(
n
)
=
∑
n
∣
d
,
d
≤
N
μ
(
d
n
)
f
(
d
)
g(n)=\sum_{n|d,d\le N}\mu(\frac{d}{n})f(d)
g(n)=n∣d,d≤N∑μ(nd)f(d)
其中,
N
N
N是一个上限。
关于倍数反演的证明,
∑
n
∣
d
,
d
≤
N
μ
(
d
n
)
f
(
d
)
=
∑
n
∣
d
,
d
≤
N
(
μ
(
d
n
)
∑
d
∣
t
,
t
≤
N
g
(
t
)
)
=
∑
n
∣
d
,
d
≤
N
(
g
(
d
)
∑
t
∣
d
n
μ
(
t
)
)
\sum_{n|d,d\le N}\mu(\frac{d}{n})f(d)=\sum_{n|d,d\le N}\Big(\mu(\frac{d}{n})\sum_{d|t,t\le N}g(t)\Big)\\=\sum_{n|d,d\le N}\Big(g(d)\sum_{t|\frac{d}{n}}\mu(t)\Big)
n∣d,d≤N∑μ(nd)f(d)=n∣d,d≤N∑(μ(nd)d∣t,t≤N∑g(t))=n∣d,d≤N∑(g(d)t∣nd∑μ(t))
关于上式中第二个等号,将求和记号写开,就可以推导出来。
根据性质2可知,
∑
t
∣
d
n
μ
(
t
)
=
[
d
n
=
=
1
]
\sum_{t|\frac{d}{n}}\mu(t)=[\frac{d}{n}==1]
∑t∣ndμ(t)=[nd==1],也就是说当
d
=
n
d=n
d=n时,结果为1,其余结果均为0。所以最终可推出:
∑
n
∣
d
,
d
≤
N
μ
(
d
n
)
f
(
d
)
=
g
(
n
)
\sum_{n|d,d\le N}\mu(\frac{d}{n})f(d)=g(n)
n∣d,d≤N∑μ(nd)f(d)=g(n)
基础问题与公式
问题1:在1~N的范围内,互质的数对一共有多少对?即问
∑
i
∑
j
[
g
c
d
(
i
,
j
)
=
=
1
]
\sum_{i}\sum_{j}[gcd(i,j)==1]
i∑j∑[gcd(i,j)==1]
这个问题的解是:
∑
i
=
1
N
∑
j
=
1
N
[
g
c
d
(
i
,
j
)
=
=
1
]
=
∑
d
=
1
N
μ
(
d
)
⋅
⌊
N
/
d
⌋
⋅
⌊
N
/
d
⌋
\sum_{i=1}^{N}\sum_{j=1}^{N}[gcd(i,j)==1]=\sum_{d=1}^{N}\mu(d)\cdot\lfloor{N/d}\rfloor\cdot\lfloor{N/d}\rfloor
i=1∑Nj=1∑N[gcd(i,j)==1]=d=1∑Nμ(d)⋅⌊N/d⌋⋅⌊N/d⌋推导过程如下,根据性质3有
∑
i
∑
j
[
g
c
d
(
i
,
j
)
=
=
1
]
=
∑
i
∑
j
∑
d
∣
g
c
d
(
i
,
j
)
μ
(
d
)
\sum_{i}\sum_{j}[gcd(i,j)==1]=\sum_{i}\sum_{j}\sum_{d|gcd(i,j)}\mu(d)
i∑j∑[gcd(i,j)==1]=i∑j∑d∣gcd(i,j)∑μ(d)考虑每一个可能的
d
d
d,即
d
d
d取值
1
,
2
,
3
,
4
,
5
,
.
.
.
1,2,3,4,5,...
1,2,3,4,5,...,有多少对
(
i
,
j
)
(i,j)
(i,j)满足
i
i
i有因子
d
d
d同时
j
j
j也有因子
d
d
d呢?当然是
⌊
N
/
d
⌋
⋅
⌊
N
/
d
⌋
\lfloor{N/d}\rfloor\cdot\lfloor{N/d}\rfloor
⌊N/d⌋⋅⌊N/d⌋。其中,
⌊
⌋
\lfloor\rfloor
⌊⌋表示向下取整,也就是C++中的整型除法运算。所以,公式1成立。另一个办法是使用性质5莫比乌斯倍数反演来证明。令,
f
(
n
)
=
[
(
i
,
j
)
有
公
因
子
n
]
f(n)=[(i,j)有公因子n]
f(n)=[(i,j)有公因子n]即,
f
(
n
)
f(n)
f(n)是
1
∼
N
1\sim N
1∼N之间有公因子n的数对的数量,显然有,
f
(
n
)
=
⌊
N
/
n
⌋
⋅
⌊
N
/
n
⌋
f(n)=\lfloor{N/n}\rfloor\cdot\lfloor{N/n}\rfloor
f(n)=⌊N/n⌋⋅⌊N/n⌋再令,
g
(
n
)
=
[
g
c
d
(
i
,
j
)
=
=
n
]
g(n)=[gcd(i,j)==n]
g(n)=[gcd(i,j)==n]即,
g
(
n
)
g(n)
g(n)是
1
∼
N
1\sim N
1∼N之间gcd为n的数对的数量,有,
f
(
n
)
=
∑
n
∣
d
,
d
≤
N
g
(
d
)
f(n)=\sum_{n|d,d\le N}g(d)
f(n)=n∣d,d≤N∑g(d)根据性质5有,
g
(
n
)
=
∑
n
∣
d
,
d
≤
N
μ
(
d
n
)
f
(
d
)
g(n)=\sum_{n|d,d\le N}\mu(\frac{d}{n})f(d)
g(n)=n∣d,d≤N∑μ(nd)f(d)
所求实际上就是
g
(
1
)
g(1)
g(1),可得
g
(
1
)
=
∑
d
=
1
N
μ
(
d
)
f
(
d
)
=
∑
d
=
1
N
μ
(
d
)
⋅
⌊
N
/
d
⌋
⋅
⌊
N
/
d
⌋
g(1)=\sum_{d=1}^{N}\mu(d)f(d)=\sum_{d=1}^{N}\mu(d)\cdot\lfloor{N/d}\rfloor\cdot\lfloor{N/d}\rfloor
g(1)=d=1∑Nμ(d)f(d)=d=1∑Nμ(d)⋅⌊N/d⌋⋅⌊N/d⌋
问题1还有另外一种做法,只考虑
[
g
c
d
(
i
,
j
)
=
=
1
,
x
>
y
]
[gcd(i,j)==1,x\gt y]
[gcd(i,j)==1,x>y],实际上就是求欧拉函数的和,如下:
∑
i
=
2
N
φ
(
i
)
\sum_{i=2}^{N}\varphi(i)
i=2∑Nφ(i)这个数乘以2就得到了所有的不相等且互质的数对的数量。而相等又能互质的数对只有1对,就是(1, 1),所以再加1即可。
问题2:在1~N的范围内,gcd为质数的数对一共有多少对?即问
∑
p
k
∑
i
∑
j
[
g
c
d
(
i
,
j
)
=
=
p
k
]
\sum_{p_k}\sum_{i}\sum_{j}[gcd(i,j)==p_k]
pk∑i∑j∑[gcd(i,j)==pk]其中,
p
k
p_k
pk是N以内的质数。考虑到,
g
c
d
(
i
,
j
)
=
p
gcd(i,j)=p
gcd(i,j)=p则
g
c
d
(
i
/
p
,
j
/
p
)
=
1
gcd(i/p,j/p)=1
gcd(i/p,j/p)=1所以
∑
p
k
∑
i
∑
j
[
g
c
d
(
i
,
j
)
=
=
p
k
]
=
∑
p
k
∑
i
∑
j
[
g
c
d
(
i
/
p
k
,
j
/
p
k
)
=
=
1
]
=
∑
p
k
∑
d
=
1
⌊
N
p
k
⌋
μ
(
d
)
⋅
⌊
⌊
N
p
k
⌋
d
⌋
⋅
⌊
⌊
N
p
k
⌋
d
⌋
\sum_{p_k}\sum_{i}\sum_{j}[gcd(i,j)==p_k]=\sum_{p_k}\sum_{i}\sum_{j}[gcd(i/p_k,j/p_k)==1]\\=\sum_{p_k}\sum_{d=1}^{\lfloor\frac{N}{p_k}\rfloor}\mu(d)\cdot\lfloor\frac{\lfloor\frac{N}{p_k}\rfloor}{d}\rfloor\cdot\lfloor\frac{\lfloor\frac{N}{p_k}\rfloor}{d}\rfloor
pk∑i∑j∑[gcd(i,j)==pk]=pk∑i∑j∑[gcd(i/pk,j/pk)==1]=pk∑d=1∑⌊pkN⌋μ(d)⋅⌊d⌊pkN⌋⌋⋅⌊d⌊pkN⌋⌋
问题3:
i
i
i在1~N范围内,
j
j
j在1~M范围内,问互质的数对的数量有多少对?
仿照问题1的解法即可。注意到
d
d
d必须是
(
i
,
j
)
(i,j)
(i,j)的公因子,所以
d
d
d必然不超过
m
i
n
(
N
,
M
)
min(N,M)
min(N,M),所以
∑
i
=
1
N
∑
j
=
1
M
[
g
c
d
(
i
,
j
)
=
=
1
]
=
∑
d
=
1
m
i
n
(
N
,
M
)
μ
(
d
)
⋅
⌊
N
/
d
⌋
⋅
⌊
M
/
d
⌋
\sum_{i=1}^{N}\sum_{j=1}^{M}[gcd(i,j)==1]=\sum_{d=1}^{min(N,M)}\mu(d)\cdot\lfloor{N/d}\rfloor\cdot\lfloor{M/d}\rfloor
i=1∑Nj=1∑M[gcd(i,j)==1]=d=1∑min(N,M)μ(d)⋅⌊N/d⌋⋅⌊M/d⌋