旋转体的体积和表面积

积分公式

令曲线 y = f ( x ) y=f(x) y=f(x) x x x轴旋转,形成的旋转体,则其体积和表面积可以计算积分而得(假设体积和表面积一定存在,积分一定存在,这里不讨论数学问题)。
体积公式为:
V = ∫ π y 2 d x V={\int}{\pi}{y^2}dx V=πy2dx
表面积公式为
S = ∫ 2 π y 1 + y ′ 2 d x S=\int{2\pi}{y}\sqrt{1+{y^{\prime}}^2}dx S=2πy1+y2 dx
剩下的就是推导定积分公式。
##ZOJ3866 Cylinder Candy##
ZOJ3866,一个圆柱体半径为 r r rmm,高度为 h h hmm,外围包裹着 d d dmm厚的涂层,求其表面积和体积。这个题目要精确到 1 0 − 8 10^{-8} 108,推不出积分公式就不用做了。
正视图
整个部分最关键的就是四个边角的形状,四个边角合在一起恰好是一个圆环的外半侧。所以关键就是求圆环的外半侧的体积以及表面积。
曲线方程为:
y = r + d 2 − x 2 , x ∈ [ − d , d ] y=r+\sqrt{d^2-x^2},x\in\left[-d,d\right] y=r+d2x2 ,x[d,d]
则,体积积分为:
V = π ∫ ( r 2 + d 2 − x 2 + 2 r d 2 − x 2    ) d x = π ∫ ( r 2 + d 2 ) d x − π ∫ x 2 d x + 2 π r ∫ d 2 − x 2 d x V=\pi\int(r^2+d^2-x^2+2r\sqrt{d^2-x^2}\;)dx\\=\pi\int(r^2+d^2)dx-\pi\int{x^2}dx+2\pi{r}\int\sqrt{d^2-x^2}dx V=π(r2+d2x2+2rd2x2 )dx=π(r2+d2)dxπx2dx+2πrd2x2 dx
第3项稍微麻烦一点,其不定积分为:
∫ d 2 − x 2 d x = 1 2 x d 2 − x 2 + d 2 2 a r c s i n x d + C \int\sqrt{d^2-x^2}dx=\frac{1}{2}x\sqrt{d^2-x^2}+\frac{d^2}{2}arcsin{\frac{x}{d}}+C d2x2 dx=21xd2x2 +2d2arcsindx+C
表面积公式首先要求 y y y的导数:
y ′ = − x d 2 − x 2 y\prime=-\frac{x}{\sqrt{d^2-x^2}} y=d2x2 x
所以,
1 + y ′ 2 = d 2 d 2 − x 2 1+{y\prime}^2=\frac{d^2}{d^2-x^2} 1+y2=d2x2d2
表面积的积分为:
S = 2 π ∫ ( r + d 2 − x 2 ) d d 2 − x 2 d x = 2 π r d ∫ 1 d 2 − x 2 d x + 2 π d ∫ d x S=2\pi\int({r+\sqrt{d^2-x^2}})\frac{d}{\sqrt{d^2-x^2}}dx\\=2\pi{rd}\int\frac{1}{\sqrt{d^2-x^2}}dx+2\pi{d}\int{dx} S=2π(r+d2x2 )d2x2 ddx=2πrdd2x2 1dx+2πddx
第一项就是 a r c s i n x d + C arcsin\frac{x}{d}+C arcsindx+C
所以,体积和表面积全部可以求出原函数的解析式。

然后把其他部分的圆柱体算上即可。

#include <cstdio>
#include <cmath>

double const PI = acos(-1.0);
double const DELTA = 1E-6;
double R,H,D;

double integral(){
	return (2.0*D*R*R+4.0*D*D*D/3.0+D*D*R*PI) * PI;
}

double integral2(){
	return 4.0*PI*D*D + 2.0*PI*PI*R*D;
}

int main(){
	int nofkase;
	scanf("%d",&nofkase);
	while( nofkase-- ){
		scanf("%lf%lf%lf",&R,&H,&D);
		double v = integral() + PI * ( R + D ) * ( R + D ) * H;
		double s = integral2() + 2.0 * PI * ( R + D ) * H + 2.0 * PI * R * R;
		printf("%.12lf %.12lf\n",v,s);
	}
	return 0;
}

##ZOJ3898 Stean##
ZOJ3898同样是旋转体的表面积和体积。曲线为:
y = 2 + c o s x y=2+cosx y=2+cosx
不同点在于定积分公式中有一项是得不到解析式的。但是这道题很明显曲线是周期性函数,定积分的周期就是 π \pi π,而题目要求在 1 0 − 2 10^{-2} 102以内,所以取 ϵ \epsilon ϵ 1 0 − 3 10^{-3} 103 1 0 − 4 10^{-4} 104直接使用积分定义去计算。每次计算需要迭代的次数在几万次,应该是没有问题的。
体积积分:
V = π ∫ ( 2 + c o s x ) 2 d x = 4 π ∫ d x + 4 π ∫ c o s x d x + π ∫ c o s 2 x d x V=\pi\int(2+cosx)^2dx\\=4\pi\int{dx}+4\pi\int{cosx}dx\\+\pi\int{cos^2x}dx V=π(2+cosx)2dx=4πdx+4πcosxdx+πcos2xdx
其中第三项为:
∫ c o s 2 x d x = x 2 + s i n 2 x 4 + C \int{cos^2x}dx=\frac{x}{2}+\frac{sin2x}{4}+C cos2xdx=2x+4sin2x+C
表面积积分:
S = 2 π ∫ ( 2 + c o s x ) 1 + s i n 2 x    d x = 4 π ∫ 1 + s i n 2 x    d x + 2 π ∫ 1 + s i n 2 x    d s i n x S=2\pi\int(2+cosx)\sqrt{1+sin^2x}\;dx\\=4\pi\int\sqrt{1+sin^2x}\;dx\\+2\pi\int\sqrt{1+sin^2x}\;dsinx S=2π(2+cosx)1+sin2x dx=4π1+sin2x dx+2π1+sin2x dsinx

其中第一项不知道积不积得出来,反正我没有积出来。数学不行,就用计算机的方法算。第二项令 t = s i n x t=sinx t=sinx,则
∫ 1 + t 2    d t = 1 2 t 1 + t 2 + 1 2 ln ⁡ ∣ t + 1 + t 2 ∣ + C \int\sqrt{1+t^2}\;dt=\frac{1}{2}t\sqrt{1+t^2}+\frac{1}{2}\ln{\left|{t+\sqrt{1+t^2}}\right|}+C 1+t2 dt=21t1+t2 +21ln t+1+t2 +C

#include <cstdio>
#include <cmath>

double const PI = acos(-1.);
double const EPS = 1E-4;

//计算一个周期
double init1p(){
    double ret = 0.0;
    for(double x=0.0;x<=0.5*PI;x+=EPS){
        double t = sin(x);
        ret += sqrt(1.0+t*t);
    }
    return 8.0*PI*ret*EPS;
}

double const ONEP = init1p();

double v(double z1,double z2){
    return 4.0 * PI * ( z2 - z1 )
        + 4.0 * PI * ( sin(z2) - sin(z1) )
        + 0.5 * PI * ( z2 - z1 )
        + 0.25 * PI * ( sin(z2+z2) - sin(z1+z1) );
}

double s(double z1,double z2){
    //计算底面积
    double y1 = 2.0 + cos(z1);
    double ret = PI * y1 * y1;

    //计算解析式的积分
    double t2 = sin(z2), t1 = sin(z1);
    double tt2 = sqrt(1.0+t2*t2), tt1 = sqrt(1.0+t1*t1);
    ret += PI * ( t2 * tt2 - t1 * tt1 )
        + PI * ( log(fabs(t2+tt2)) - log(fabs(t1+tt1)) );

    //计算周期
    int n = (int)(( z2 - z1 ) / PI);
    ret += ONEP * (double)n;

    //计算积分
    double tmp = 0.0;
    for(double x=z1+PI*(double)n;x<=z2;x+=EPS){
        double t = sin(x);
        tmp += sqrt(1.0+t*t);
    }
    return ret += tmp * 4.0 * PI * EPS;
}

int main(){
    int kase;
    scanf("%d",&kase);
    while(kase--){
        double z1,z2;
        scanf("%lf%lf",&z1,&z2);
        printf("%.5lf %.5lf\n",v(z1,z2),s(z1,z2));
    }
    return 0;
}

  • 6
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
教学目标: 1. 了解简单几何体的定义和特征。 2. 学习如何计算简单几何体的表面积体积。 3. 掌握简单几何体的应用。 教学内容: 1. 简单几何体的定义和特征 简单几何体是由平面图形绕轴线或平面旋转、拉伸、截面等变换而成的立体图形,包括圆柱体、圆锥体、球体、棱柱体、棱锥体和正四面体等。 2. 计算简单几何体的表面积体积 (1)圆柱体的表面积体积表面积 = 2πrh + 2πr² 体积 = πr²h (2)圆锥体的表面积体积表面积 = πr(r+√(r²+h²)) 体积 = 1/3πr²h (3)球体的表面积体积表面积 = 4πr² 体积 = 4/3πr³ (4)棱柱体的表面积体积表面积 = 底面积 + 侧面积 底面积 = 底边周长×高÷2 侧面积 = 边长×高×侧棱数÷2 体积 = 底面积×高 (5)棱锥体的表面积体积表面积 = 底面积 + 侧面积 底面积 = 底边周长×高÷2 侧面积 = 侧棱长×半斜高×侧棱数÷2 体积 = 1/3×底面积×高 (6)正四面体的表面积体积表面积 = 底面积 + 侧面积 底面积 = a²×√3÷4 侧面积 = a²×√3÷4 体积 = a³×√2÷12 3. 简单几何体的应用 简单几何体广泛应用于建筑、制造、艺术、游戏等领域,例如建筑中的柱子、圆顶、梯形天花板等,制造中的圆锥形锥子、球形轴承、棱柱体的零件等,艺术中的立体雕塑、游戏中的骰子等。 教学过程: 1. 导入新知识,介绍简单几何体的定义和特征,引导学生了解不同几何体的形状和特点。 2. 讲解不同几何体的表面积体积计算方法,并通过例题进行演示和讲解。 3. 给学生几道练习题,让学生自己计算简单几何体的表面积体积。 4. 引导学生思考简单几何体的应用场景,并让学生自己设计和制作简单几何体的模型。 5. 总结本节课的内容,回答学生的疑问。 教学评估: 1. 通过课堂练习,检查学生对简单几何体表面积体积计算方法的掌握情况。 2. 观察学生在制作简单几何体模型时的表现和成果,评估学生对简单几何体应用的理解和实际操作能力。 3. 鼓励学生在课后继续探索简单几何体的应用,并分享自己的经验和成果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值