K 邻近算法(k-Nearest Neighbor,KNN)
于 2019-01-10 13:15:38 首次发布
K近邻算法是一种基于实例的学习,没有显式的学习过程。它根据训练集中与新实例最近的K个实例来决定新实例的类别,主要涉及K值选择、距离度量和分类决策规则。K值的选择影响模型复杂度,距离度量常用包括欧式距离等。KNN对异常值敏感,且需进行特征归一化确保分类公正。
摘要由CSDN通过智能技术生成