K 邻近算法(k-Nearest Neighbor,KNN)

K近邻算法是一种基于实例的学习,没有显式的学习过程。它根据训练集中与新实例最近的K个实例来决定新实例的类别,主要涉及K值选择、距离度量和分类决策规则。K值的选择影响模型复杂度,距离度量常用包括欧式距离等。KNN对异常值敏感,且需进行特征归一化确保分类公正。
摘要由CSDN通过智能技术生成
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值