K-means 算法

K-means算法是一种无监督聚类方法,通过迭代优化目标函数,使样本点到所属聚类中心的距离和最小。文章介绍了算法的基本流程、目标函数、K值选择及其可能的改进方法,如K-means++和二分K-means。K-means++通过优化初始聚类中心的选择来避免局部最优,而二分K-means通过递归划分来提高聚类性能。
摘要由CSDN通过智能技术生成

一、假设

K-means 算法是一种聚类算法。为了更好的解释这个算法,首先我们假设给定的数据集为 { x ( 1 ) , x ( 2 ) , ⋯   , x ( m ) } , x ( i ) ∈ R n \{ x^{(1)}, x^{(2)}, \cdots, x^{(m)} \}, x^{(i)} \in \mathbb{R}^n { x(1),x(2),,x(m)},x(i)Rn,注意数据是没有标签的。

二、K-means 算法的一般流程

1、选择初始的 K 个聚类中心 μ 1 , μ 2 , … , μ k ∈ R n \mu_1, \mu_2, \dots, \mu_k \in \mathbb{R} ^ n μ1,μ2,,μkRn
2、重复以下两步直到收敛(聚类中心不再变化或者变化低于阙值):
    (1) 计算每个样本到各个聚类中心的距离,并将其类别标号设为距其最近的聚类中心的标号,即:

c ( i ) : = a r g m i n j ∥ x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值