BZOJ1007 HNOI2008 水平可见直线

4 篇文章 0 订阅
1 篇文章 0 订阅

1007: [HNOI2008]水平可见直线

Time Limit: 1 Sec   Memory Limit: 162 MB
Submit: 4609   Solved: 1703
[ Submit][ Status][ Discuss]

Description

 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.
    例如,对于直线:
    L1:y=x; L2:y=-x; L3:y=0
    则L1和L2是可见的,L3是被覆盖的.
    给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.

Input

第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi

Output

从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3
-1 0
1 0
0 0

Sample Output

1 2

按斜率排序,然后维护一个下凸壳,记得去重。
代码如下:
/* 
* @Author: duyixian
* @Date:   2015-09-08 17:00:18
* @Last Modified by:   duyixian
* @Last Modified time: 2015-09-10 11:10:38
*/

#include "cstdio"
#include "cstdlib"
#include "iostream"
#include "algorithm"
#include "cstring"
#include "queue"
#include "cmath"

using namespace std;

#define MAX_SIZE 50005
#define INF 0x3F3F3F3F
#define Eps 1e-5
#define Mod

inline int Get_Int()
{
	int Num = 0, Flag = 1;
	char ch;
	do
	{
		ch = getchar();
		if(ch == '-')
			Flag *= -1;
	}
	while(ch < '0' || ch > '9');
	do
	{
		Num = Num * 10 + ch - '0';
		ch = getchar();
	}
	while(ch >= '0' && ch <= '9');
	return Num * Flag;
}

struct Line
{
	double a, b;
	int Num;

	inline bool operator < (Line const &temp) const
	{
		if(a < temp.a - Eps)
			return true;
		else if(a > temp.a + Eps)
			return false;
		else
			return b > temp.b;
	}
}Lines[MAX_SIZE], A[MAX_SIZE], Stack[MAX_SIZE];

int N, Total, Top;

bool Ans[MAX_SIZE];

inline double Count(Line x, Line y)
{
	return (x.b - y.b) / (y.a - x.a);
}

int main()
{
	cin >> N;
	for(int i = 1; i <= N; ++i)
	{
		scanf("%lf%lf", &Lines[i].a, &Lines[i].b);
		Lines[i].Num = i;
	}
	sort(Lines + 1, Lines + N + 1);
	for(int i = 1; i <= N; ++i)
		if(abs(Lines[i].a - Lines[i - 1].a) > Eps)
			A[++Total] = Lines[i];
	Stack[++Top] = A[1];
	Stack[++Top] = A[2];
	for(int i = 3; i <= Total; ++i)
	{
		while(Top >= 2 && Count(A[i], Stack[Top]) <= Count(Stack[Top], Stack[Top - 1]) + Eps)
			--Top;
		Stack[++Top] = A[i];
	}
	for(int i = 1; i <= Top; ++i)
		Ans[Stack[i].Num] = true;
	for(int i = 1; i <= N; ++i)
		if(Ans[i])
			printf("%d ", i);
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值