BZOJ1026 SCOI2009windy数

1026: [SCOI2009]windy数

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 4193  Solved: 1877
[Submit][Status][Discuss]

Description

windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,在A和B之间,包括A和B,总共有多少个windy数?

Input

包含两个整数,A B。

Output

一个整数。

Sample Input

【输入样例一】
1 10
【输入样例二】
25 50

Sample Output

【输出样例一】
9
【输出样例二】
20

HINT

【数据规模和约定】

100%的数据,满足 1 <= A <= B <= 2000000000 。


裸数位DP,DP[i][j]表示长度为i以j开头的windy数有多少个

代码如下:

/**************************************************************
    Problem: 1026
    User: duyixian
    Language: C++
    Result: Accepted
    Time:0 ms
    Memory:1276 kb
****************************************************************/
 
/* 
* @Author: 逸闲
* @Date:   2015-10-01 16:26:54
* @Last Modified by:   逸闲
* @Last Modified time: 2015-10-01 18:19:12
*/
 
#include "cstdio"
#include "cstdlib"
#include "iostream"
#include "algorithm"
#include "cstring"
#include "queue"
#include "cmath"
 
using namespace std;
 
#define INF 0x3F3F3F3F
#define MAX_SIZE 50
#define Eps 
#define Mod 
 
inline int Get_Int()
{
    int Num = 0;
    char ch;
    do
        ch = getchar();
    while(ch < '0' || ch > '9');
    do
    {
        Num = Num * 10 + ch - '0';
        ch = getchar();
    }
    while(ch >= '0' && ch <= '9');
    return Num;
}
 
int A, B, DP[MAX_SIZE][11];
 
inline int Count(int Num)
{
    int A[MAX_SIZE], Total = 0, Ans = 0;
    while(Num)
    {
        A[++Total] = Num % 10;
        Num /= 10;
    }
    A[Total + 1] = -1;
    for(int i = Total; i >= 1; --i)
    {
        for(int j = 0; j < A[i]; ++j)
            if(abs(j - A[i + 1]) > 1)
                Ans += DP[i][j];
        if(abs(A[i] - A[i + 1]) < 2)
            break;
    }
    for(int i = 1; i < Total; ++i)
        for(int j = 1; j <= 9; ++j)
            Ans += DP[i][j];
    return Ans;
}
 
int main()
{
    for(int i = 0; i <= 9; ++i)
        DP[1][i] = 1;
    for(int i = 2; i <= 13; ++i)
        for(int j = 0; j <= 9; ++j)
        {
            for(int k = j - 2; k >= 0; --k)
                DP[i][j] += DP[i - 1][k];
            for(int k = j + 2; k <= 9; ++k)
                DP[i][j] += DP[i - 1][k];
        }
    cin >> A >> B;
    cout << Count(B + 1) - Count(A) << endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值