MySQL索引-B-Tree

索引的本质

数据库查询是数据库的主要功能之一,最基本的查询算法是顺序查找(linear search)时间复杂度为O(n),显然在数据量很大时效率很低。优化的查找算法如二分查找(binary search)、二叉树查找(binary tree search)等,虽然查找效率提高了。但是各自对检索的数据都有要求:二分查找要求被检索数据有序,而二叉树查找只能应用于二叉查找树上,但是数据本身的组织结构不可能完全满足各种数据结构(例如,理论上不可能同时将两列都按顺序进行组织)。所以,在数据之外,数据库系统还维护着满足特定查找算法的数据结构。这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构就是索引

B-Tree

数据库表与B-Tree索引关系,栗子:

左边为数据库表,有col1和col2两列;

右边为B_Tree索引结构,每个节点包含索引的键值和对应数据表地址的指针。

B-Tree结构的数据可以让系统高效的找到数据所在的磁盘块。为了描述B-Tree,首先定义一条记录为一个二元组[key, data] ,key为记录的键值,对应表中的主键值,data为一行记录中除主键外的数据。对于不同的记录,key值互不相同。

一棵m阶的B-Tree有如下特性: 
1. 每个节点最多有m个孩子。 
2. 除了根节点和叶子节点外,其它每个节点至少有Ceil(m/2)个孩子。 
3. 若根节点不是叶子节点,则至少有2个孩子 
4. 所有叶子节点都在同一层,且不包含其它关键字信息 
5. 每个非终端节点包含n个关键字信息(P0,P1,…Pn, k1,…kn) 
6. 关键字的个数n满足:ceil(m/2)-1 <= n <= m-1 
7. ki(i=1,…n)为关键字,且关键字升序排序。 
8. Pi(i=1,…n)为指向子树根节点的指针。P(i-1)指向的子树的所有节点关键字均小于ki,但都大于k(i-1)

3阶B_Tree

图例说明:每个节点占用一个盘块的磁盘空间,一个节点上有两个升序排序的关键字和三个指向子树根节点的指针,指针存储的是子节点所在磁盘块的地址。两个关键词划分成的三个范围域对应三个指针指向的子树的数据的范围域。以根节点为例,关键字为17和35,P1指针指向的子树的数据范围为小于17,P2指针指向的子树的数据范围为17~35,P3指针指向的子树的数据范围为大于35。

模拟查找关键字29的过程:

  1. 根据根节点找到磁盘块1,读入内存。【磁盘I/O操作第1次】
  2. 比较关键字29在区间(17,35),找到磁盘块1的指针P2。
  3. 根据P2指针找到磁盘块3,读入内存。【磁盘I/O操作第2次】
  4. 比较关键字29在区间(26,30),找到磁盘块3的指针P2。
  5. 根据P2指针找到磁盘块8,读入内存。【磁盘I/O操作第3次】
  6. 在磁盘块8中的关键字列表中找到关键字29。

分析上面过程,发现需要3次磁盘I/O操作,和3次内存查找操作。由于内存中的关键字是一个有序表结构,可以利用二分法查找提高效率。而3次磁盘I/O操作是影响整个B-Tree查找效率的决定因素。B-Tree相对于AVLTree缩减了节点个数,使每次磁盘I/O取到内存的数据都发挥了作用,从而提高了查询效率。

B+Tree

B+Tree是在B-Tree基础上的一种优化,使其更适合实现外存储索引结构,InnoDB存储引擎就是用B+Tree实现其索引结构。

从上一节中的B-Tree结构图中可以看到每个节点中不仅包含数据的key值,还有data值。而每一个页的存储空间是有限的,如果data数据较大时将会导致每个节点(即一个页)能存储的key的数量很小,当存储的数据量很大时同样会导致B-Tree的深度较大,增大查询时的磁盘I/O次数,进而影响查询效率。在B+Tree中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储key值信息,这样可以大大加大每个节点存储的key值数量,降低B+Tree的高度。

B+Tree相对于B-Tree有几点不同:

  1. 非叶子节点只存储键值信息。
  2. 所有叶子节点之间都有一个链指针。
  3. 数据记录都存放在叶子节点中。
  4. 内结点不存储data,只存储key

将上一节中的3阶B-Tree优化,由于B+Tree的非叶子节点只存储键值信息,假设每个磁盘块能存储4个键值及指针信息,则变成B+Tree后其结构如下图所示():

实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree的高度一般都在2~4层。mysql的InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要1~3次磁盘I/O操作。

数据库中的B+Tree索引可以分为聚集索引(clustered index)和辅助索引(secondary index)。上面的B+Tree示例图在数据库中的实现即为聚集索引,聚集索引的B+Tree中的叶子节点存放的是整张表的行记录数据。辅助索引与聚集索引的区别在于辅助索引的叶子节点并不包含行记录的全部数据,而是存储相应行数据的聚集索引键,即主键。当通过辅助索引来查询数据时,InnoDB存储引擎会遍历辅助索引找到主键,然后再通过主键在聚集索引中找到完整的行记录数据。

在B+Tree的每个叶子结点增加一个指向相邻叶子结点的指针,就形成了带有顺序访问指针的B+Tree。做这个优化的目的是为了提高区间访问的性能,例如图中如果要查询key为从15到60的所有数据记录,当找到15后,只需顺着结点和指针顺序遍历就可以一次性访问到所有数据结点,极大提到了区间查询效率。
 

为什么使用B-Tree(B+Tree)

一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。下面先介绍内存和磁盘存取原理,然后再结合这些原理分析B-/+Tree作为索引的效率。
 

拓展点:

1: MyISAM允许没有任何索引和主键的表存在,而对于InnoDB来说如果表创建者没有指定表主键的话或者唯一非空索引, 会自动生成一个6字节的rowid作为主键(用户不可见), 也就是说InnoDB表必须要有主键。

2: 对于InnoDB来说不建议使用过长的字段作为主键,这样会导致辅助索引变得过大。

3: 使用自增字段作为InnoDB表主键是个很好的选择, 这样数据的插入、删除都十分高效。 不要用随机值或者业务相关的值, 这样为了维护B+Tree特性而带来额外的分裂移动操作十分昂贵, 特别是会导致不同页之间交换数据的情况, 可能会有额外的磁盘IO。

主存存取原理

主存是一系列的存储单元组成的矩阵,每个存储单元存储固定大小的数据。每个存储单元有唯一的地址,现代主存的编址规则比较复杂,这里将其简化成一个二维地址:通过一个行地址和一个列地址可以唯一定位到一个存储单元

主存的存取过程如下:

当系统需要读取主存时,则将地址信号放到地址总线上传给主存,主存读到地址信号后,解析信号并定位到指定存储单元,然后将此存储单元数据放到数据总线上,供其它部件读取。

写主存的过程类似,系统将要写入单元地址和数据分别放在地址总线和数据总线上,主存读取两个总线的内容,做相应的写操作

索引一般以文件形式存储在磁盘上,索引检索需要磁盘I/O操作。与主存不同,磁盘I/O存在机械运动耗费,因此磁盘I/O的时间消耗是巨大的。

 

磁盘结构

如图1所示,图中的一圈圈灰色同心圆为一条条磁道,从圆心向外画直线,可以将磁道划分为若干个弧段,每个磁道上一个弧段被称之为一个扇区(图践绿色部分)。扇区是磁盘的最小组成单元,通常是512字节。

图2展示了由一个个盘片组成的磁盘立体结构,一个盘片上下两面都是可读写的,图中蓝色部分叫柱面

 

当需要从磁盘读取数据时,系统会将数据逻辑地址传给磁盘,磁盘的控制电路按照寻址逻辑将逻辑地址翻译成物理地址,即确定要读的数据在哪个磁道,哪个扇区。为了读取这个扇区的数据,需要将磁头放到这个扇区上方,为了实现这一点,磁头需要移动对准相应磁道,这个过程叫做寻道,所耗费时间叫做寻道时间,然后磁盘旋转将目标扇区旋转到磁头下,这个过程耗费的时间叫做旋转时间。


由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:

当一个数据被用到时,其附近的数据也通常会马上被使用。程序运行期间所需要的数据通常比较集中。

由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。

转自:

http://blog.csdn.net/u013235478/article/details/50625677

https://blog.csdn.net/waeceo/article/details/78702584

©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页