亲爱的技术爱好者们,我是你们的老朋友—— 一个热爱.NET和AI相关技术的博主,在今天这个信息与数据爆炸的时代,我们始终寻求着处理数据分析任务的更优雅、更高效的方式。Microsoft团队推出了一个叫做TaskWeaver的神器,这可不仅仅是一个简单的分析工具,而是一个革新的代码优先智能代理框架,它能够无缝地规划并执行数据分析任务!
🚀 令人激动的近期更新
-
2024年1月23日:TaskWeaver现如今能通过你的会话历史记录打造出持久的体验,个性化至此!🎉
-
2024年1月17日:新增插件vision_web_explorer,可开启浏览器,畅游网页世界!🌐
-
2024年1月15日:支持UI和命令行界面的Streaming功能!✌️
-
2024年1月1日:欢迎加入TaskWeaver Discord社区。
-
2023年12月21日:支持多种LLMs,包含LiteLLM、Ollama、Gemini、QWen等!🎈
-
2023年12月21日:TaskWeaver网站上线,提供更多详尽的文档。
🌟 亮点速览
-
丰富的数据结构支持:TaskWeaver可以使用Python中丰富的数据结构,如DataFrame,不必再纠结于字符串处理。
-
自定义算法封装:你可以将自己的算法封装为插件,并通过TaskWeaver协调执行。
-
领域专业知识融合:TaskWeaver旨在轻松集成特定领域知识,提升可靠性。
-
状态保持执行:TaskWeaver设计以支持状态保持执行,确保用户体验的连贯和流畅。
-
代码校验:TaskWeaver会在执行前验证生成的代码,检测潜在问题,并提供修复建议。
-
易用性:通过样例、范例和教程,TaskWeaver易于上手,开箱即用。
-
易于调试:通过详细且透明的日志助你深入理解整个流程,包括LLM提示、代码生成和执行过程。
-
安全性考量:基本的会话管理功能,确保不同用户数据的隔离;代码执行过程中的隔离防止相互影响。
-
易于扩展:能够利用多个代理协作完成更复杂任务。
✨ 快速入门
🛠️ 第一步:安装 TaskWeaver要求Python版本 >= 3.10。通过以下命令安装:
# 克隆仓库
git clone https://github.com/microsoft/TaskWeaver.git
cd TaskWeaver
# 安装依赖
pip install -r requirements.txt
🖊️ 第二步:配置LLMs 配置taskweaver_config.json,以OpenAI为例:
{
"llm.api_key": "这里填入api密钥",
"llm.model": "比如,gpt-4"
}
🚩 第三步:启动TaskWeaver ⌨️ 通过命令行界面运行,或通过Web UI进行交互,详见文档。
📖 详细文档 更多详细文档请访问TaskWeaver开源项目或官方网站。
https://github.com/microsoft/TaskWeaver
❓ 获取帮助 GitHub Issues(首选)、Discord讨论群组等。
🎬 演示例子 通过web UI可以更好地展示生成的成果,例如图片。演示也可以在命令行界面进行。
1️⃣ 数据库提取数据并应用异常检测算法的演示。
2️⃣ 预测某产品未来7天价格的演示。
💡 TaskWeaver的规划基于LLM模型,因此复现示例时可能与视频中所示流程不同。精确的提示将有助于模型生成更好的计划和代码。
📚 引用 如果你在研究中使用TaskWeaver,请引用官方的论文。
随着TaskWeaver的推出,数据分析的未来已经改变。作为.NET技术爱好者,你还在等什么?快来加入这场技术革新的浪潮中,体验TaskWeaver为我们带来的全新分析方式吧!🎇🔍💡
[你,准备好迎接数据分析的新篇章了吗?立即加入TaskWeaver,与世界同步前进!]