随着人工智能的不断发展,AI已经逐渐成为我们日常生活中不可分割的一部分。今天,我为大家带来的是一个我近期投入研究的开源项目——AntSK,它结合了LLamaSharp,不仅带来了高效便捷的本地离线AI知识库搭建方法,更是无需借助公司账户,个人开发者也能轻松搭建和使用。
项目地址请参考:
https://github.com/AIDotNet/AntSK
AntSK:项目概述与特点
在介绍如何整合LLamaSharp之前,我们首先要了解的是AntSK这个项目。AntSK利用Blazor技术与Semantic Kernel相结合,配合Kernel Memory,构建了一个易于操作和扩展的本地知识管理系统。开源的特性使得它受到了不少朋友的关注和喜爱,并为没有公司资源的个人开发者提供了更多可能。
外部模型依赖的困境
尽管AntSK本身崭露头角,我们发现,在实际应用中,尤其是想要利用国内某些Embedding模型时,往往遇到了限制个人账号申请的壁垒,例如“百川”等AI模型服务。而星火大模型虽然对个人开放,但它缺少必要的Embedding能力,使得我们无法充分利用。
LLamaSharp:融合之道
这个问题的解决方案是引入LLamaSharp,一个可以帮助我们实现本地AI模型部署和使用的开源库。LLamaSharp的优势在于它允许我们在不依赖外部服务的情况下,本地运行大模型。更加详细的信息和代码,你可以在LLamaSharp on GitHub找到。
https://github.c