问题描述:
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。 例如 a b c e s f c s a d e e 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。
思路:
这实际上是回溯法的一个应用。所谓回溯法就是按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择。具体到这道题目就是对于每个字符,如果在矩阵中找到了其在矩阵中的位置,进行下一次寻找的时候,可以从上、下、左、右四个方向(边界元素除外)进行递归寻找,如果找到了则继续寻找下一个字符;如果没有找到的话,则回到上一个字符重新寻找。直到找到全部字符在矩阵中对应的位置。
代码:
public class Solution { public boolean hasPath( char [] matrix, int rows, int cols, char [] str){ boolean visited[]= new boolean [matrix.length]; for ( int i = 0 ;i<rows;i++){ for ( int j= 0 ;j<cols;j++){ if (hasPathCore(matrix,i,j, 0 ,rows,cols,str,visited)){ return true ; } } } return false ; } public boolean hasPathCore( char [] matrix, int i, int j, int k, int rows, int cols, char [] str, boolean [] visited){ int index = i*cols+j; if (i< 0 ||i>=rows||j< 0 ||j>=cols||matrix[index]!=str[k]||visited[index]){ return false ; } visited[index] = true ; if (k == str.length - 1 ) return true ; if (hasPathCore(matrix,i- 1 ,j,k+ 1 ,rows,cols,str,visited) ||hasPathCore(matrix,i,j-1 ,k+ 1 ,rows,cols,str,visited) ||hasPathCore(matrix,i+1 ,j,k+ 1 ,rows,cols,str,visited) ||hasPathCore(matrix,i,j+1 ,k+ 1 ,rows,cols,str,visited)){ return true ; }else { k--; visited[index] = false ; } return false ; } }