Implement strStr()--LeetCode

https://leetcode.com/problems/implement-strstr/description/

思路就是 移动指向两个字符串的位置索引。如果字符匹配就往后移动,匹配下一个字符;一旦不匹配就往回移动,重新开始匹配。

简单粗暴实现方式:

class Solution {
public:
    int strStr(string haystack, string needle) {
        int hsize = haystack.size();
        int nsize = needle.size();
     
        int i = 0,j = 0;
        
        while(i < hsize && j < nsize){
            if(haystack[i] == needle[j]) {
                ++i;
                ++j;
            }
            else
            {
                i = i - j + 1;
                j = 0;
            }
        }
        if( j == nsize) return i-j;
        else return -1;
    }
};

应用KMP算法:

先针对needle(p)字符串进行一次额外处理,得到一个对应长度的next数组(根据最长前缀后缀长度,使得无需回溯到needle字符串开头匹配)。next数组的含义,比如 next[j] = k, 代表的意思是j之前的字符串的最长前缀后缀长度为k,即p0 p1...pk-1 = pj-k...pj-2 pj-1。

class Solution {
public:
    int strStr(string haystack, string needle) {
        if(needle.size() <= 0) return 0;
        vector<int> next = buildNext(needle);
        if(next.size() > 0)
        {
            int i = 0;
            int j = 0;
            while(i < haystack.size())
            {
                if(j == -1 || haystack[i] == needle[j])
                {
                    ++i;
                    ++j;
                }
                else
                {
                    j = next[j];
                }

                if(j == needle.size())
                {
                    return i - j;
                }
            }
        }
        return -1;
    }
private:
    vector<int> buildNext(string needle)
    {
        if(needle.size() <= 0) return vector<int>();
        
        vector<int> next(needle.size(), -1);
        
        int j = 0;
        int k = -1;
        
        while(j < needle.size() - 1)
        {
            if(k == -1 || needle[k] == needle[j])
            {
                ++j;
                ++k;
                next[j] = k;
            }
            else
            {
                k = next[k];    
            }
        }
        return next;
    }
};

KMP算法详细介绍参考:

https://blog.csdn.net/v_july_v/article/details/7041827

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ivy_0709

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值