题目:一堆硬币,一个机器人,如果是反的就翻正,如果是正的就抛掷一次,无穷多次后,求正反的比例。
解析:假设某个阶段正面硬币的比例为p,则反面的比例为1-p,下一次翻转后,p的部分分为p/2的正面、p/2的反面,而1-p的反面部分全部变为正面。趋于平衡时,前后两次正反的比例应相等,即:p/(1-p)=(p/2+(1-p))/(p/2),得到p=2/3。
更直接一点,翻转前后正面(反面)相等,即p=p/2+(1-p),直接得到p=2/3。
2、概率题:一个汽车公司的产品,甲厂占40%,乙厂占60%,甲的次品率是1%,乙的次品率是2%,现在抽出一件汽车时次品,问是甲生产的可能性
40%*1%
3、
有100盏灯泡,第一轮点亮所有电灯,第二轮每两盏灯熄灭一盏,即熄灭第2盏,第4盏,以此类推,第三轮改变编号为3的倍数的电灯,第3盏,第6盏,如果原来那盏灯是亮的,就熄灭它,如果原来是灭的,就点亮它,以此类推,直到第100轮。问第100结束后,还有多少盏灯泡是亮的?
解答:
由题意最如果最后某一盏灯是亮着的,那么它一定是被切换了奇数次(第0次的时候全部都关着)。
首先来看一下6这盏灯,它被切换的次数是第1次(轮),第2次,第3次和第6次。
可以看出如果某一轮6被切换了,那么该轮数一定可以整数6,即是6的约数,由于约数是成对出现的,所以6被关掉的次数是偶数次。
但是是对于像4,16这样的完全平方数,由于他们都有一个约数k 使得 K的平方等于该完全平方数,所以其被关掉的次数应该为奇数,因为K只能被算一次。
所以该问题的答案是只有1-100的完全平方数,才是亮着的。
即1,4,3,16,25,36,49,64,81,100这10盏灯亮着。
*备注:
完全平方数:一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数
4、链表翻转。给出一个链表和一个数k,比如链表1→2→3→4→5→6,k=2,则翻转后2→1→4→3→6→5,若k=3,翻转后3→2→1→6→5→4,若k=4,翻转后4→3→2→1→5→6,用程序实现
- struct Node
- {
- int value;
- Node *next;
- };
- Node* reverseList(Node *head, int k)
- {
- if (NULL == head || k < 1)
- {
- return NULL;
- }
- if (k == 1)
- {
- return head;
- }
- Node *newHead = NULL;
- Node *prev = NULL;
- Node *begin = head;
- Node *end = head;
- Node *p = NULL;
- Node *q = NULL;
- bool firstHandled = false;
- while (begin)
- {
- int count = k-1;
- end = begin;
- while (count && end->next != NULL)
- {
- end = end->next;
- count--;
- }
- if (count != 0)
- {
- if (newHead == NULL)
- {
- newHead = begin;
- }
- else
- {
- prev->next = begin;
- }
- return newHead;
- }
- p = begin->next;
- q = begin;
- while (q != end)
- {
- Node *temp = p->next;
- p->next = q;
- q = p;
- p = temp;
- }
- if (prev == NULL)
- {
- newHead = end;
- }
- else
- {
- prev->next = end;
- }
- prev = begin;
- prev->next = NULL;
- begin = p;
- }
- return newHead;
- }
5、一个函数access(),调用频率不能超过R次/sec,用程序实现一个函数,当超过R次/sec时返回access false,不超过时返回success
6、一个m*n的矩阵,从左到右从上到下都是递增的,给一个数elem,求是否在矩阵中,给出思路和代码