面试过程中的排列组合和趣味性题目二

感想

下述的内容都来自互联网,如果对答案或者题解有异议的地方,欢迎跟我探讨哈。

problem 31

  • 四维空间中有两个夹角60度的向量A和B,随机生成一个向量C分别与A和B计算内积,那么两个内积符号相同的概率为____。
内积 A · B=|A| · |B| · cos<A,B> , 内积的正负由A,B夹角余弦决定,
夹角的取值范围为[0, Π]

设 A 向量方向为 X 轴正方向,B向量为60度
(当然也可能为120度,只考虑第1和第2象限,其他象限概率相同,特值为60度是合理的)
则 C 与 A的夹角为 [ 0, Π /2 ]为正 ,[ Π /2, Π ]为负; 
则 C 与 B的夹角为 [  Π /3 , Π /2+ Π /3 ]为正 ,[ Π /2+ Π /3 , Π ]为负
因此:    2 Π / 3  /    Π   =2/3

problem 32

  • 52张牌,没有大小王,平均分给4个人,至少一个人拿到至少2张A的概率是多少?
52张牌分给四个人,则每人13张,全排列是52!
至少一个人拿到至少2张A的反面情况即为:4个人每个人拿一张A
这种情况为:每13张牌中有一个是A,四个A的全排列为4!,则此种情况一共为:
4! * C(13,1) * C(13,1) * C(13,1) * C(13,1)乘以剩下的48张牌的全排48!
所以答案应该为:1- 4! * C(13,1) * C(13,1) * C(13,1) * C(13,1)*48!/52!  
约等于 0.895

learning

  • 随机变量的分布密度积分为1
  • 假设检验的基本思想是小概率 反证法 思想。小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。 反证法 思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为不假设成立。

problem 33

  • 设事件A,B 相互独立,且已知P(A)=0.6, P(A U B)=0.7, 则P(B)= ( )
P(A U B)=0.7 = P(A) + P(B) - P(AB),由于A和B相互独立,
则P(AB) = P(A)*P(B),且P(A)=0.6,可得P(B) = 1/4

problem 34

  • 每台物理计算机可以虚拟出 20 台虚拟机,假设一台虚拟机发生故障当且仅当它所宿主的物理机发生故障。通过 5 台物理机虚拟出100 台虚拟机,那么关于这 100 台虚拟机的故障的说法正确的是()?
    A 单台虚拟机的故障率高于单台物理机的故障率
    B 这 100 台虚拟机发生故障是彼此独立的
    C 这100台虚拟机单位时间内出现故障的个数高于100台物理机单位时 间内出现故障的个数
    D 无法判断这 100 台虚拟机和 100 台物理机哪个更可靠
    E 如果随机选出 5 台虚拟机组成集群, 那么这个集群的可靠性和 5 台物 理机的可靠性相同
    F 可能有一段时间只有一台虚拟机发生故障
- 对于D选项:100台虚拟机,也就是只有5台物理机。
假设物理机的故障率为a,那么5台物理机的可靠率为1-a^5,
而100台物理机的可靠率为1-a^100,因此5台物理机的可靠率要低于100台物理机的可靠率,
即100台虚拟机的可靠率低于100台物理机的可靠率。
- E 当且仅当5台虚拟机分布在5台物理机上时才相同
- F不可能, 一故障最少20台
- A相等
- B不独立, 一台物理机上的虚拟机相关

problem 35

  • 考虑一个特殊的hash函数h,能将任一字符串hash成一个整数k,其中概率P(k)=2^(-k),k=1,2,…∞。对一个未知大小的字符串集合S中的每一个元素取hash值所组成的集合为h(S)。若h(S)中最大的元素max h (S) = 10,那么S的大小的期望是_______。
先来一个简单的问题,一个色子,掷到6的期望是多少次呢。我相信这题目应该都能答出来,6次。六分之一的倒数就是6次了,
但是要讲出里面的原因可不太简单。其实算这个期望次数可以按如下过程,假设期望是E。
假设第一次掷到不是6,则概率是5/6,那么就期望还需要E次才能够掷到6,这个过程的期望是5/6*(1+E),
假设第一次掷到6,那么这个过程的期望就是1,概率是 1/6,
综合以上可以看出来,E=5/6*(1+E) + 1/6 * 1
解出来的到E=6。
因此这个笔试题一样可以这样解决,假设期望大小是E,
假设第一个字符串大小不是10,那么概率是1-1/(2^10),
并且这个过程的期望就变成了E+1,如果第一次字符串大小是10,
那么这个过程的期望变为1,但是概率变为1/(2^10)。
因此E=(1-1/(2^10))*(1+E) + 1/(2^10)1/6 * 1 解出来E就是2^10=1024了

reference

第一篇,记一个概率题吧

problem 36

  • 袋子中分别一叠纸币,其中5元面值的纸币6张,10元面值的纸币5张,20元面值的纸币4张,从袋子中任意取4张纸币,则每种面值至少取到一张的概率为____。
C(6,2)*C(5,1)*C(4,1)+C(6,1)*C(5,2)*C(4,1)+C(6,1)*C(5,1)*C(4,2)/(C(15,4)
=48/91

problem 37

  • 当前国内A股市场的新股发行采取的是抽签申购的方式。假设最多可以申购某新股X 1万股,以1千股为单位分配一个号码进行抽签,每个号码抽中与否是相互独立的且概率为0.5%,X的发行价是10元,涨至15元和20元的概率均为50%,那么在最大申购的情况下盈利的期望是____。
- 抽中的概率:(10000/1000)*0.5%=5%
- 股票数:1000*5%=50
- 盈利=((15-10)*50%+(20-10)*50%)*50=375

problem 38

  • 有4副相同的牌,每副牌有4张不同的牌.先从这16张牌中,随机选4张出来.然后,在这4张牌中随机选择一张牌,然后把抽出的一张放回3张中,再随机选择一张牌.与上次选出的牌一样的概率是()
- 直接看第二次抽样即可,与第一次抽的是同一张牌的概率是1/4,
- 不同张的概率是3/4,同一张的话肯定是一样,
- 不同张的时候如果抽中一样的牌的概率是3/15,
- 所以答案是1/4+3/4 * 3/15 = 2/5

problem 39

  • 某公司有这么一个规定:只要有一个员工过生日,当天所有员工全部放假一天。但在其余时候,所有员工都没有假期,必须正常上班。假设一年有365天,每个员工的生日都概率均等地分布在这365天里。那么,这个公司需要雇用多少员工,才能让公司一年内所有员工的总工作时间期望值最大
由于期望值满足线性关系(即对于随机变量 X 和 Y 有 E(X) + E(Y) = E(X+Y) ),
因此我们只需要让每一天员工总工作时间的期望值最大就可以了。
假设公司里有 n 个人,那么在特定的一天里,没有人过生日的概率是 (364/365) n  。
因此,这一天的期望总工作时间就是 n · (364/365) n  个工作日。
为了考察函数 n · (364/365) n  的增减性,
我们来看一下 ((n+1) · (364/365) n+1 ) / (n · (364/365) n ) 的值,它等于 (364 · (n+1)) / (365 · n) 。
如果分子比分母小,解得 n > 364 。可见,要到 n = 365 以后,函数才是递减的。
答案:365 

problem 40

  • An insurance company has a paper record and an electronic record for every claim. For an inaccurate paper record, 60% chances that the electronic record is inaccurate. For an inaccurate electronic record, 75% chances that the paper record is inaccurate. 3% of all the claims are inaccurate both in paper record and in electronic record. Pick one claim randomly, what are the chances that it is both accurate in paper record and in electronic record?
- p为纸质文档,e为电子文档,0为错误,1为正确。
设总概率为1,四种情况表示为p(00)+p(01)+p(10)+p(11)=1。
依题意,有p(00)=3%,
                p(00)/p(00)+p(01)=60%
                p(00)/p(00)+p(10)=75%
可得四种情况分别为
00   3%
01   2%
10  1%
11  94%

problem 41

  • 某种产品中,合格品率为85%。
    一个合格品被检查成次品的概率是10%,一个次品被检查成合格品的概率为5%。
    问题:求一个被检查成合格品的产品确实为合格品的概率()
被检查为合格品且为合格品的概率:0.85*0.9;
被检查为合格品概率为:0.85*0.9 + 0.15*0.05;
条件概率:(0.85*0.9) / (0.85*0.9 + 0.15*0.05) = 0.99;

problem 42

  • 黑白球各5000个,每次从其中取两个出来,若同色,则放回一个黑球,否则放回一个白球,问最后剩下的是黑球的概率是多少?100%
- 取出2个黑球:白球不变,黑球个数减1
取出2个白球:白球个数减2,黑球个数加1
取出1黑1白:白球不变,黑球个数减1
也就是说,白球的个数 不是减2就是不变,所以白球的个数一直为偶数,5000,4998,.....2,0,也就是说,如果最后剩下了一个球,那么这个球绝对不可能是白球,只能是黑球.

problem 43

  • 在正方体上任取三个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为
共有8个顶点,总的有C(8,3)种选择。
直角非等腰:任取某一条边上的两点,
取其以对角线为对面的那一条边上两个顶点的任意一个。一共有12条边x2种顶点=24
24/C(8,3)=24/56=3/7。

problem 44

  • 一个机器人玩抛硬币的游戏,一直不停的抛一枚不均匀的硬币,硬币有A,B两面,A面的概率为3/4,B面的概率为1/4。问第一次出现连续的两个A年的时候,机器人抛硬币的次数的期望是多少?
假设抛硬币的次数期望为 T,若第一次为B,则需重新开始,若第一个为A, 第二次为B,也需要重新开始,若两次都为A,则游戏结束,由此得到:
T = 1/4 * (1+T) + 3/4 * 1/4 * (T+2) + 3/4 * 3/4 * 2
计算得到 T = 28 / 9

problem 45

  • 设A,B,C 为三个事件,且A,B 相互独立,则以下结论中不正确的是
    A. 若PC=1,则AC与BC也独立.
    B. 若PC=1,则A并C与B也独立.
    C. 若PC=0,则A并C与B也独立.
    D. 若C属于B,则A与C也独立.
- 独立需要P(AC)=P(A)*P(C) 
- 假设P:A,B,C均不为0,而A,B相交
- 且P(AB)=P(A)P(B),C为B中不与A相交的部分(C=B-A∩B),
- 那么明显P(AC)=0!=P(A)P(C)

problem 46

  • 中关村电子城某卖手机的店铺给客人报价,如果按照底价500元(成本价)报出,那么客人就一定会选择在该店铺购买;价格每增加1元,客人流失的可能性增加1%。那么该店铺给客人报出的最优价格是?
- 我们假设卖500元的时候会有N个顾客购买
- 设卖价是在成本价500的基础上增加X元得到,则顾客流失X%
- 最终受益为X*(N*(1-X%)),即每本书的受益乘以购买量
X*(N*(1-X%))化简为 (-xx+100x)N/100
问题转化为二次函数最值问题
很明显,当x=50是,函数去最大值
也就是售价为550元

problem 47

  • 甲乙两路车发车间隔均为10分钟的公交车发车时刻分钟数各位分别为2和8,那么对于一个随机到达的乘客,他乘坐甲车的概率为:______
- 10分钟一班,题目结果即为10分钟以内乘坐甲车概率的计算。
- 从0开始,在2分钟前都是等甲车的,那么就有0.2的几率了,
- 从2分钟过后到8分钟这段时间内都是等乙车的,每分钟0.1,
- 那么就有0.6了的几率是等乙车的。
- 那么8分钟过后呢?那只能等下一班的甲车了,同样每一分钟0.1,
- 到10分钟为止,就累积了0.2,
- 这时又该从头算起了,那么甲车的概率为一开始的0.2加上8分钟后的0.2,则为0.4

problem 48

  • 一堆硬币,一个机器人,如果是反的就翻正,如果是正的就抛掷一次,无穷多次后,求 正反的比例()
- 1.状态转移条件,如果为反就翻正,如果是正就抛掷一次 
- 2.状态终止条件,本次翻转后得到的正反比例,和下次翻转后得到的正反比例相同 设某个阶段正面的比例为p,则反面的比例为1-p。
- 下一次执行转移条件,正面的比例为p/2 + (1-p),反面的比例为p/2,
- 根据终止条件得到方程: p / (1-p) = (p/2 + (1-p)) / (p/2) ==> p = 2 / 3; 
- 本次正面 :本次反面 == 下次正面 :下次反面 因此正反比例为 p / (1-p) = 2 : 1

problem 49

  • 有1,2,3,…无穷个格子,你从1号格子出发,每次1/2概率向前跳一格,1/2概率向前跳两格,走到格子编号为4的倍数时结束,结束时期望走的步数为____。
- 跳一格跳两格都算一步;
dp(i,j)表示从格子i到格子j的期望步数:
dp(1,4)=1+0.5*dp(2,4)+0.5*dp(3,4);
dp(2,4)=1+0.5*dp(3,4)+0.5*dp(4,4);
dp(3,4)=1+0.5*dp(4,4)+0.5*dp(1,4);
dp(4,4)=0;
求解上述方程得到dp(1,4)=18/5;
- 每次先走一步,然后再加上之后的期望。比如:dp(2,4)=1+0.5*dp(3,4)+0.5*dp(4,4);
- 指的是从第二个格子到第四个格子的期望,先走一次要加1,
- 可能走一步到达第三个格子所以加上dp(3,4).
- 还可能走两步到达第四个格子所以加上dp(4,4)。

problem 50

  • 老王有两个孩子,已知至少有一个孩子是在星期二出生的男孩。问:两个孩子都是男孩的概率是多大?
- 姐妹俩:不用看了,不满足至少有一个周二男孩的条件。
- 兄妹俩:那哥哥一定是周二出生的了,妹妹出生的星期数有7种可能。
- 姐弟俩:弟弟一定是周二出生,姐姐出生的星期数有7种可能。
- 兄弟俩:兄弟二人出生的星期数总共有7 * 7 = 49种可能,但其中有6 * 6 = 36种都不满足至少有一个人是周二出生的条件,因此实际上有49 - 36 = 13种可能。
- 因此,满足条件的情况(这里的情况是指综合考虑孩子的性别和出生星期数)总数为7 + 7 + 13 = 27。而其中有13种可能对应于两个孩子都是男孩。因此题目所求概率是13 / 27。

reference

老王有两个孩子,已知至少有一个孩子是在星期二出生的男孩。问:两个孩子都是男孩的概率是多大?

problem 51

  • 甲、乙两人相约12:00~13:00在某地会面,假定每人在这段时间内的每个时刻到达会面地点的可能性是相同的,先到者等20min后便离去,试求两人会面的概率。
在平面上建立如图所示的直角坐标系,
直线x=60,直线y=60,x轴、y轴围成一个正方形区域G,
设甲12时x分到达会面地点,乙12时y分到达会面地点,
这个结果与平面上的点(x,y)对应,
于是试验的所有可能结果就与G中的所有点一一对应,
由题意知,每一个试验结果出现的可能性是相等的,
因此,试验属于几何概型。
当且仅当甲、乙两人到达会面地点的时间差不超过20min 时,
甲、乙两人能会面,即|y-x|≤20,
因此,图中的阴影区域g就表示“甲、乙两人能会面”,
容易求得g的面积为602-402=2000,G的面积为3600,
由几何概型的概率计算公式,

“甲、乙两人能会面”的概率P=2000/3600=5/9

reference

魔方格

problem 52

  • 猴子吃香蕉问题

一个小猴子边上有100 根香蕉,它要走过50 米才能到家,每次它最多搬50 根香蕉,每走1 米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。

设 小猴从0 走到50, 到A 点时候他可以直接抱香蕉回家了, 
可是到A 点时候他至少消耗了3A 的香蕉( 到A, 回0, 到A), 
一个限制就是小猴只能抱50 只香蕉, 那么在A 点小猴最多49 只香蕉.
100-3A=49, 所以A=17.   
这样折腾完到家的时候香蕉剩100-3A-(50-A)=50-2A=16.

problem 53

  • 如何用一枚硬币等概率地产生一个1到3之间的随机整数?

如果这枚硬币是不公正的呢?

如果是公正的硬币,则投掷两次,“正反”为1,“反正”为2,“正正”为3,“反反”重来。
如果是不公正的硬币,注意到出现“正反”和“反正”的概率一样,
因此令“正反反正”、“反正正反”、“正反正反”分别为1、2、3,其余情况重来。
另一种更妙的办法是,投掷三次硬币,“正反反”为1,“反正反”为2,“反反正”为3,
其余情况重来。

problem 54

  • 30枚面值不全相同的硬币摆成一排,甲、乙两个人轮流选择这排硬币的其中一端,并取走最外边的那枚硬币。
    如果你先取硬币,能保证得到的钱不会比对手少吗?
先取者可以让自己总是取奇数位置上的硬币或者总是取偶数位置上的硬币。

数一数是奇数位置上的面值总和多还是偶数位置上的面值总和多,
然后总是取这些位置上的硬币就可以了。

problem 55

  • 一个环形轨道上有n个加油站,所有加油站的油量总和正好够车跑一圈。证明,总能找到其中一个加油站,使得初始时油箱为空的汽车从这里出发,能够顺利环行一圈回到起点。
总存在一个加油站,仅用它的油就足够跑到下一个加油站
(否则所有加油站的油量加起来将不够全程)。

把下一个加油站的所有油都提前搬到这个加油站来,并把油已被搬走的加油站无视掉。
在剩下的加油站中继续寻找油量足以到达下个加油站的地方,不断合并加油站,
直到只剩一个加油站为止。显然从这里出发就能顺利跑完全程。

另一种证明方法:
先让汽车油箱里装好足够多的油,随便从哪个加油站出发试跑一圈。
车每到一个加油站时,记录此时油箱里剩下的油量,然后把那个加油站的油全部装上。
试跑完一圈后,检查刚才路上到哪个加油站时剩的油量最少,那么空着油箱从那里出发显然一定能跑完全程。

problem 56

  • 有20瓶药丸,其中19瓶装有1克/粒的药丸,余下一瓶装有1.1克/粒的药丸。给你一台称重精准的天平,怎么找出比较重的那瓶药丸?天平只能用一次。
如果从药瓶#1取出一粒药丸,从药瓶#2取出两粒药丸,那么,称得重量为多少呢?
结果要看情况而定。如果药瓶#1的药丸较重,则称得重量为3.1克。
如果药瓶#2的药丸较重,则称得重量为3.2克。
将之前两瓶药丸的解法加以推广,就能得到完整解法:从药瓶#1取出一粒药丸,从药瓶#2取出两粒,从药瓶#3取出三粒,依此类推。
如果每粒药丸均重1克,则称得总重量为210克
(1 + 2 + … + 20 = 20 * 21 / 2 = 210),
“多出来的”重量必定来自每粒多0.1克的药丸。

药瓶的编号可由算式(weight – 210 grams) / 0.1 grams得出。
因此,若这堆药丸称得重量为211.3克,则药瓶#13装有较重的药丸。

problem 57

  • 假设淘宝网上某商品A在任一时刻t内若有人浏览,则该商品在下一时刻t+1内无人浏览的概率为0.35(即下一时刻的浏览情况仅与当前时段相关),定义此条件概率为 P(O_{t+1}=0|O_t=1)=0.35(即用“1”代表有人浏览的事件,用“0”代表无人浏览的事件),类似得定义P(O_{t+1}=1|O_t=1)=0.65,P(O_{t+1}=0|O_t=0)=0.4,P(O_{t+1}=1|O_t=0)=0.6。若此商品A在t=0时有人浏览,它在t=100000时有人浏览的概率是____。

解答过程

Problem 58

  • 在区间[-2, 2]里任取两个实数,它们的和>1的概率是()
  • 线性规划
    转换成坐标系就是一个线性规划的题目,x+y>1 占上述举行的面积比

Problem 59

  • 小a和小b一起玩一个游戏,两个人一起抛掷一枚硬币,正面为H,反面为T。两个人把抛到的结果写成一个序列。如果出现HHT则小a获胜,游戏结束。如果HTT出现则小b获胜。小a想问一下他获胜的概率是多少?
 随机过程中的First Step Analysis
设P_s表示状态为s时'HHT'发生的概率。显然我们有P(HHT)=1以及P(HTT)=0。

状态转移

Nill表示还没有抛时的状态,这时有1/2的概率变成H还有1/2的概率变成T,
变成T时相当于又回到Nill。
我们要求的即P(Nill)。
由状态转移图,可以列出式子:
P(Nill) = 1/2*P(Nill) + 1/2*P(H)
P(H) = 1/2*P(HH) + 1/2 * P(HT)
P(HH) = 1/2*P(HH) + 1/2*P(HHT)
P(HT) = 1/2*P(H) + 1/2*P(HTT)
p(HHT) = 1
P(HTT) = 0
最后可以解得 P(Nill) = 2/3

problem 60

  • a和b两个人每天都会在7点-8点之间到同一个车站乘坐公交车,a坐101路公交车,每5分钟一班【7:00,7:05……】,b坐102路公交车,每10分钟一班【7:03,7:13…】,问a和b碰面的概率是多少?( )

人相遇

以b作为对象:对于每个10分钟来说,相遇概率计算:
3/60*3/60表明在b在0~3分钟来此时a只能在0~3分钟来,
2/60表明b在3~5分钟来此时a可以在0~13分钟来肯定相遇,
5/60表明b在5~10分钟来此时a可以在5~13分钟来都没有问题。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农民小飞侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值