BOJ 451 田田的算术题

题意:给出一个数列。有两个操作:1.将给定范围内的项按照顺序加上一个等差数列的项。2.求出给定范围的数列项的和。

思路1:区间更改和区间求和的操作,很容易想到了线段树。由于等差数列满足可加性(即对相同范围内的数进行两次操作1,可以看做一次操作1的和),所以必定可以用线段树。

代码如下:

#include <bits/stdc++.h>
 
using namespace std;
 
template<class T>
inline bool read(T &n){
    T x = 0, tmp = 1; char c = getchar();
    while ((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar();
    if (c == EOF) return false;
    if (c == '-') c = getchar(), tmp = -1;
    while (c >= '0' && c <= '9') x *= 10, x += (c - '0'), c = getchar();
    n = x*tmp;
    return true;
}
 
template <class T>
inline void write(T n) {
    if (n < 0) {
        putchar('-');
        n = -n;
    }
    int len = 0, data[20];
    while (n) {
        data[len++] = n % 10;
        n /= 10;
    }
    if (!len) data[len++] = 0;
    while (len--) putchar(data[len] + 48);
}
 
 
typedef long long LL;
 
const int MAXN = 101000;
 
long long a[MAXN];
int T, M, N, Q, l, r, x, d;
 
struct interval{
    int left, right, mid;
    long long sum, delta, x;
    bool lazy;
};
 
struct SegmentTree{
    static const int MAX = 8 * 101000;
    interval node[MAX];
 
    inline int lson(int n){ return n << 1; }
    inline int rson(int n){ return (n << 1) | 1; }
 
    void build(int l, int r, int n){
        int m = (l + r) / 2;
        node[n].left = l;
        node[n].right = r;
        node[n].mid = m;
        node[n].sum = node[n].delta = node[n].x = 0LL;
        node[n].lazy = false;
 
        if (l == r){
            node[n].sum = a[l];
            return;
        }
        build(l, m, lson(n));
        build(m + 1, r, rson(n));
        node[n].sum += node[lson(n)].sum + node[rson(n)].sum;
    }
 
    void pushdown(int n){
        if (node[n].left == node[n].right){
            node[n].lazy = false;
            return;
        }
 
        //printf("[%d %d]",node[n].left,node[n].right);
 
        int l = lson(n);
        node[l].lazy = true;
        node[l].delta += node[n].delta;
        node[l].x += node[n].x;
        long long n1 = node[n].mid - node[n].left + 1;
        node[l].sum += node[n].x * n1 + n1 * (n1 - 1) / 2 * node[n].delta;
 
        //printf("lson: %lld ",node[l].sum);
 
        int r = rson(n);
        node[r].lazy = true;
        node[r].delta += node[n].delta;
        long long a1 = node[n].x + (node[n].mid - node[n].left + 1) * node[n].delta;
        node[r].x += a1;
        long long n2 = node[n].right - node[n].mid;
        node[r].sum += a1 * n2 + n2 * (n2 - 1) / 2 * node[n].delta;
 
        //printf("rson: %lld\n",node[r].sum);
 
 
        node[n].lazy = false;
        node[n].delta = node[n].x = 0LL;
    }
    long long sum(int l, int r, int n){
        if(node[n].left == node[n].right)
            return node[n].sum;
        if(l <= node[n].left && node[n].right <= r)
            return node[n].sum;
 
        if(node[n].lazy)
            pushdown(n);
 
        long long ans = 0LL;
 
        if (l <= node[n].mid)
            ans += sum(l, r, lson(n));
        if (r > node[n].mid)
            ans += sum(l, r, rson(n));
 
        return ans;
    }
    void modify(int l, int r, long long x, long long d, int n){
        if(node[n].left == node[n].right){
            node[n].sum += x;
            return;
        }
 
        if (l <= node[n].left && node[n].right <= r){
            node[n].lazy = true;
            node[n].delta += d;
            node[n].x += x;
            long long n1 = r - l + 1;
            node[n].sum += n1 * x + n1 *(n1 - 1) / 2 * d;
 
            //printf("m: %d %d\n",l,r);
            return;
        }
        if(node[n].lazy)
            pushdown(n);
 
        long long nn = r - l + 1;
        node[n].sum += nn * x + nn * (nn - 1) / 2 * d;
 
        if (r <= node[n].mid)
            modify(l, r, x, d, lson(n));
        else if (l > node[n].mid)
            modify(l, r, x, d, rson(n));
        else{
            modify(l, node[n].mid, x, d, lson(n));
            modify(node[n].mid + 1, r, x + (node[n].mid - l + 1) * d, d, rson(n));
        }
    }
};
 
SegmentTree s;
 
 
int main(void)
{
    //freopen("input.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
    read(T);
    while (T--){
        read(N), read(M);
        for (int i = 1; i <= N; ++i)
            read(a[i]);
        s.build(1, N, 1);
        for (int i = 0; i < M; ++i){
            read(Q), read(l), read(r);
            if (Q == 2)
                write(s.sum(l, r, 1)),puts("");
            else{
                read(x), read(d);
                s.modify(l, r, x, d, 1);
            }
        }
    }
    return 0;
}


思路二:由于时限是10s,可以利用复杂度为n√n的块状数组。

              每个块状数组维护整体的和,和数组内所有元素对等差数列的加减(同样具有可加性)。

              如果查询或者修改区间有部分无法完全包含在块状数组中,则暴力的求和和更改。

              注意对数组大小的选择。过大过小都不合适。

代码如下:

#include <bits/stdc++.h>
 
using namespace std;
 
template<class T>
inline bool read(T &n){
    T x = 0, tmp = 1; char c = getchar();
    while ((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar();
    if (c == EOF) return false;
    if (c == '-') c = getchar(), tmp = -1;
    while (c >= '0' && c <= '9') x *= 10, x += (c - '0'), c = getchar();
    n = x*tmp;
    return true;
}
 
template <class T>
inline void write(T n) {
    if (n < 0) {
        putchar('-');
        n = -n;
    }
    int len = 0, data[20];
    while (n) {
        data[len++] = n % 10;
        n /= 10;
    }
    if (!len) data[len++] = 0;
    while (len--) putchar(data[len] + 48);
}
 
 
const int B = 250;
const int MAX = 100100;
int T,M,N,Q;
int l,r,x,d;
 
long long a[MAX];
 
struct buc{
    long long sum;
    long long d,x;
    void clear(){
        sum = d = x = 0LL;
    }
} bucket[MAX / B];
 
long long getsum(int l, int r){
    long long ans = 0;
    while(l < r && l % B != 0){
        int id = l / B;
        int pos = l - id * B;
        ans += a[l] + bucket[id].x + pos * bucket[id].d;
        l++;
    }
    while(l < r && r % B != 0){
        r--;
        int id = r / B;
        int pos = r - id * B;
        ans += a[r] + bucket[id].x + pos * bucket[id].d;
    }
    while(l < r){
        int id = l / B;
        ans += bucket[id].sum;
        l += B;
    }
    return ans;
}
 
void update(int l,int r,long long x,long long d)
{
    int cnt = 0;
    while(l < r && l % B != 0){
        int id = l / B;
        long long aa = x + cnt * d;
        a[l] += aa;
        bucket[id].sum += aa;
        cnt++,l++;
    }
    while(l + B < r){
        int id = l / B;
        bucket[id].sum += B * (x + cnt * d) + B *(B - 1) / 2 * d ;
        bucket[id].x += x + cnt * d;
        bucket[id].d += d;
        l += B,cnt += B;
    }
    while(l < r){
        int id = l / B;
        long long aa = x + cnt * d;
        a[l] += aa;
        bucket[id].sum += aa;
        cnt++,l++;
    }
}
 
int main(void)
{
    //freopen("input.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    read(T);
    while(T--){
        read(N),read(M);
        for(int i = 0 ; i < N / B + 1; i++)
            bucket[i].clear();
        for(int i = 0 ; i< N; ++i)
            read(a[i]);
        for(int i = 0 ; i< N; ++i){
            int id = i / B;
            bucket[id].sum += a[i];
        }
        for(int i = 0; i< M; ++i){
            read(Q);
            if(Q == 2){
                read(l),read(r);
                printf("%lld\n",getsum(l-1,r));
            }
            else{
                read(l),read(r),read(x),read(d);
                update(l-1,r,(long long)x,(long long)d);
            }
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值