题意:给出一个树,让你求出两个节点的最近公共祖先。
思路:这里直接转换成了欧拉序列的RMQ问题。
欧拉序列是按照DFS顺序遍历整棵数形成的序列。 如下图的欧拉序列就是121343531.
可以发现,在欧拉序列中,一段子串就对应了一条路径,而且是连续不断的路径。
而对于两个点的公共祖先,就是连接两个点的路径中深度最小的点。而最小且是连续区间,正好是ST表对应的RMQ。
所以用ST表解决公共祖先的问题的方法如下:
1.dfs得到欧拉序列,同时记录每个节点最先在欧拉序列中出现的下标在first数组中。
2.询问任意两点u,v的最近公共祖先,就等价于求欧拉序列中,区间[first[u],first[v]]中深度最低的节点的编号。
代码如下:
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAX = 10010;
int head[MAX],nxt[MAX<<2],to[MAX<<2],len[MAX<<2];
int tot,tot1;
int fath[MAX];
int dep[MAX],dfsnum[MAX<<2],first[MAX],p[MAX<<2],dp[MAX<<2][20];
void init()
{
tot = 0; tot1 = 1;
memset(head,-1,sizeof(head));
memset(fath,-1,sizeof(fath));
}
void addedge(int u, int v)
{
to[tot] = v;
nxt[tot] = head[u], head[u] = tot++;
to[tot] = u;
nxt[tot] = head[v], head[v] = tot++;
}
void dfs(int u, int fa,int d)
{
dep[u] = d;
first[u] = tot1;
dfsnum[tot1] = u;tot1++;
for(int i = head[u]; ~i; i = nxt[i]){
int v = to[i];
if(v == fa) continue;
dfs(v,u,d+1);
dfsnum[tot1] = u;tot1++;
}
}
int lca(int u, int v)
{
p[0] = -1;
for(int i = 1; i < tot1; ++i)
p[i] = i & i - 1? p[i-1]:p[i-1] + 1;
for(int i = 1;i < tot1; ++i) dp[i][0] = dfsnum[i];
for(int j = 1; j <= p[tot1 - 1]; ++j)
for(int i = 1; i + (1<<j) - 1 < tot1; ++i)
if(dep[dp[i][j-1]] < dep[dp[i + (1<<j-1)][j-1]])
dp[i][j] = dp[i][j-1];
else
dp[i][j] = dp[i + (1<<j-1)][j-1];
u = first[u], v = first[v];
int l = min(u,v), r = max(u,v);
int k = p[r - l + 1];
return dep[dp[l][k]] < dep[dp[r - (1<<k) + 1][k]]?dp[l][k]:dp[r - (1<<k)+1][k];
}
int main(void)
{
//freopen("input.txt","r",stdin);
int T,N,u,v;
scanf("%d",&T);
while(T--){
init();
scanf("%d",&N);
for(int i = 0; i < N - 1; ++i){
scanf("%d %d",&u,&v);
addedge(u,v);
fath[v] = u;
}
int root = 1;
while(fath[root] != -1)
root = fath[root];
dfs(root,-1,0);
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
return 0;
}