POJ 1330 Nearest Common Ancestors 最近公共祖先 欧拉序列RMQ

题意:给出一个树,让你求出两个节点的最近公共祖先。

思路:这里直接转换成了欧拉序列的RMQ问题。

          欧拉序列是按照DFS顺序遍历整棵数形成的序列。 如下图的欧拉序列就是121343531.

可以发现,在欧拉序列中,一段子串就对应了一条路径,而且是连续不断的路径。

而对于两个点的公共祖先,就是连接两个点的路径中深度最小的点。而最小且是连续区间,正好是ST表对应的RMQ。

所以用ST表解决公共祖先的问题的方法如下:

1.dfs得到欧拉序列,同时记录每个节点最先在欧拉序列中出现的下标在first数组中。

2.询问任意两点u,v的最近公共祖先,就等价于求欧拉序列中,区间[first[u],first[v]]中深度最低的节点的编号。

代码如下:

#include <cstdio>
#include <algorithm>
#include <cstring>

using namespace std;

const int MAX = 10010;

int head[MAX],nxt[MAX<<2],to[MAX<<2],len[MAX<<2];
int tot,tot1;
int fath[MAX];
int dep[MAX],dfsnum[MAX<<2],first[MAX],p[MAX<<2],dp[MAX<<2][20];


void init()
{
    tot = 0; tot1 = 1;
    memset(head,-1,sizeof(head));
    memset(fath,-1,sizeof(fath));
}

void addedge(int u, int v)
{
    to[tot] = v;
    nxt[tot] = head[u], head[u] = tot++;
    to[tot] = u;
    nxt[tot] = head[v], head[v] = tot++;
}

void dfs(int u, int fa,int d)
{
    dep[u] = d;
    first[u] = tot1;
    dfsnum[tot1] = u;tot1++;
    for(int i = head[u]; ~i; i = nxt[i]){
        int v = to[i];
        if(v == fa) continue;
        dfs(v,u,d+1);
        dfsnum[tot1] = u;tot1++;
    }
}

int lca(int u, int v)
{
    p[0] = -1;
    for(int i = 1; i < tot1; ++i)
        p[i] = i & i - 1? p[i-1]:p[i-1] + 1;
    for(int i = 1;i < tot1; ++i) dp[i][0] = dfsnum[i];
    for(int j = 1; j <= p[tot1 - 1]; ++j)
        for(int i = 1; i + (1<<j) - 1 < tot1; ++i)
            if(dep[dp[i][j-1]] < dep[dp[i + (1<<j-1)][j-1]])
                dp[i][j] = dp[i][j-1];
            else
                dp[i][j] = dp[i + (1<<j-1)][j-1];
    u = first[u], v = first[v];
    int l = min(u,v), r = max(u,v);
    int k = p[r - l + 1];
    return dep[dp[l][k]] < dep[dp[r - (1<<k) + 1][k]]?dp[l][k]:dp[r - (1<<k)+1][k];
}

int main(void)
{
    //freopen("input.txt","r",stdin);
    int T,N,u,v;
    scanf("%d",&T);
    while(T--){
        init();
        scanf("%d",&N);
        for(int i = 0; i < N - 1; ++i){
            scanf("%d %d",&u,&v);
            addedge(u,v);
            fath[v] = u;
        }
        int root = 1;
        while(fath[root] != -1)
            root = fath[root];
        dfs(root,-1,0);
        scanf("%d%d",&u,&v);
        printf("%d\n",lca(u,v));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值