UVA 11475 Extend to Palindrome 后缀数组 LCP

题意:给出一个字符串,求在其后添加最少的字符,使整个字符串变成一个回文串。

思路:我们要求出的是最长的回文后缀。

我们将字符串反转后接在原串的后面,求出后缀数组。然后从前向后找那个位置原字符串能和翻转后的字符串匹配到最后位置的。这就是已经成为回文串的后缀。然后再加上其余的字符即可。

代码如下:

#include <cstdio>
#include <algorithm>
#include <cstring>

using namespace std;


    static const int maxn =500100;
    int sa[maxn], rnk[maxn], height[maxn];
    int wa[maxn], wb[maxn], wv[maxn], wd[maxn];

    int cmp(int *r, int a, int b, int l){
        return r[a] == r[b] && r[a+l] == r[b+l];
    }

    void da(int *r, int n, int m){          //  倍增算法 r为待匹配数组  n为总长度 m为字符范围
        int i, j, p, *x = wa, *y = wb, *t;
        for(i = 0; i < m; i ++) wd[i] = 0;
        for(i = 0; i < n; i ++) wd[x[i]=r[i]] ++;
        for(i = 1; i < m; i ++) wd[i] += wd[i-1];
        for(i = n-1; i >= 0; i --) sa[-- wd[x[i]]] = i;
        for(j = 1, p = 1; p < n; j *= 2, m = p){
            for(p = 0, i = n-j; i < n; i ++) y[p ++] = i;
            for(i = 0; i < n; i ++) if(sa[i] >= j) y[p ++] = sa[i] - j;
            for(i = 0; i < n; i ++) wv[i] = x[y[i]];
            for(i = 0; i < m; i ++) wd[i] = 0;
            for(i = 0; i < n; i ++) wd[wv[i]] ++;
            for(i = 1; i < m; i ++) wd[i] += wd[i-1];
            for(i = n-1; i >= 0; i --) sa[-- wd[wv[i]]] = y[i];
            for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i ++){
                x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p - 1: p ++;
            }
        }
    }

    void calc_height(int *r, int n){           //  求height数组。
        int i, j, k = 0;
        for(i = 1; i <= n; i ++) rnk[sa[i]] = i;
        for(i = 0; i < n; height[rnk[i ++]] = k){
            for(k ? k -- : 0, j = sa[rnk[i]-1]; r[i+k] == r[j+k]; k ++);
        }
    }
    /**************************************/
    static const int MAX = 200100;
    int p[MAX];
    int d[MAX][20];

    void rmq_init(int n){
        p[0] = -1;
        for(int i = 1; i <= n; ++i)
            p[i] = i & (i-1)?p[i-1]:p[i-1]+1;
        for(int i = 1; i <= n; ++i) d[i][0] = height[i];
        for(int j = 1; j <= p[n]; ++j)
            for(int i = 1; i + (1 << j) - 1 <= n; ++i)
                d[i][j] = min(d[i][j-1],d[i+(1<<j-1)][j-1]);
    }

    int rmp_query(int l, int r){
        int k = p[r - l + 1];
        return min(d[l][k],d[r - (1<<k) + 1][k]);
    }

    int lcp(int l, int r){
        l = rnk[l], r = rnk[r];
        if(l > r) swap(l,r);l++;
        return rmp_query(l,r);
    }

/************************************************/

    void calc(int*r, int n, int m){
        r[n] = 0;
        da(r,n+1,m);
        calc_height(r,n);
        rmq_init(n);
    }




char str[MAX];
int r[MAX<<1];
int n,len;


int main(void)
{
    //freopen("input.txt","r",stdin);
    while(~scanf("%s",str)){
        len = strlen(str);
        for(int i = 0; i < len; ++i)
            r[i] = r[2 * len  - i] = str[i];
        r[len] = '$',p[len] = 0;
        n = 2 * len + 1;
        calc(r,n,256);
        int i;
        for(i = 0; i < len; ++i){
            int l = lcp(i,len+1);
            if(i + l == len)
                break;
        }
        printf("%s",str);
        for(i -= 1; i >= 0; --i)
            putchar(str[i]);
        putchar('\n');
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值