描述
有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=10000)个点状的喷水装置,每个喷水装置i喷水的效果是让以它为中心半径为Ri的圆都被润湿。请在给出的喷水装置中选择尽量少的喷水装置,把整个草坪全部润湿。
-
输入
-
第一行输入一个正整数N表示共有n次测试数据。
每一组测试数据的第一行有三个整数n,w,h,n表示共有n个喷水装置,w表示草坪的横向长度,h表示草坪的纵向长度。
随后的n行,都有两个整数xi和ri,xi表示第i个喷水装置的的横坐标(最左边为0),ri表示该喷水装置能覆盖的圆的半径。
输出
-
每组测试数据输出一个正整数,表示共需要多少个喷水装置,每个输出单独占一行。
如果不存在一种能够把整个草坪湿润的方案,请输出0。
样例输入
-
2 2 8 6 1 1 4 5 2 10 6 4 5 6 5
样例输出
-
1
2
-
#include<iostream> #include<cstdio> #include<cmath> #include<vector> using namespace std; typedef pair<double,int> P; vector<P > a; int comp(vector<P>::iterator be,vector<P>::iterator en){ return (*be).first < (*en).first; } int main(){ int T; cin>>T; while(T--){ a.clear(); int n,cot = 0; double h,r,w,x,temp,sum = 0; cin>>n>>w>>h; h /= 2; while(n--){ scanf("%lf%lf",&x,&r); temp = r * r - h * h; if(temp > 0){ temp = sqrt(temp); a.push_back(P(x-temp,x+temp));//存的是left和right边界点 } } while(sum < w && !a.empty()){ //找长度最大且可以到达左边的数 int max = 0; vector<P>::iterator maxbe = a.end(); for(vector<P>::iterator be = a.begin();be != a.end();be++){ if((*be).first <= sum && (*be).second > max){ max = (*be).second; maxbe = be; } }
-
<span style="white-space:pre"> </span>//如果没有找到,到达不了,结束 if(maxbe == a.end()) break; sum = (*maxbe).second; a.erase(maxbe); cot++; } if(sum < w) cout<<0<<endl; else cout<<cot<<endl; } return 0; }