线性SVM与软间隔最大化

本文详细介绍了线性支持向量机(SVM)的原理,包括松弛变量和惩罚代价的概念,如何通过引入松弛变量解决线性不可分问题。接着,探讨了线性SVM的原始问题及对偶问题,特别是拉格朗日函数和拉格朗日对偶问题。还阐述了支持向量的重要角色以及合页损失函数的作用,展示了SVM如何在保证间隔最大化的同时减少误分类点。
摘要由CSDN通过智能技术生成

线性支持向量机

松弛变量和惩罚代价

线性不可分意味着某些样本点 (xi,yi) 不能满足函数间隔大于等于1的约束条件。可以对每个样本点 (xi,yi) 引入一个松弛变量 ξi0 ,使函数间隔加上松弛变量大于等于1.这样,约束条件变为
yi(wixi+b)1ξi
同时,对每个松弛变量 ξi ,支付一个代价 ξi ,目标函数变成
12||w||2+Ci=1Nξi (7.31)
这里C>0称为惩罚参数,C较大对误分类惩罚增大。最小化
目标函数(7.31)包含两层含义:使间隔尽量大,同时使得误分类点个数尽量少。

原始问题

线性不可分支持向量机的学习问题变成如下凸二次规划问题(原始问题)

minw,b,ξ12||w||2+Ci=1Nξi(7.32)s.t.yi(wxi+b)1ξi,i=1,...,N(7.33)ξi0,i=1,...N(7.33)

原始问题(7.32)-(7.34)是一个凸二次规划问题。可以证明w的解是唯一的,但b的解可能不唯一,而是存在于一个区间。

学习的对偶算法

对偶问题

原始问题(7.32)-(7.34)的对偶问题是

mina12i=1Nj=1Naiajyiyj(xixj)i=1Nai(7.37)s.t.i=1Naiyi=0(7.38)0aiC,i=1,...,N(7.39)

拉格朗日函数

L(w,b,a)=12||w||2+Ci=1NξiNi=1ai(yi(wxi+b)1+ξi)Ni=1μiξi (7.40) ,其中 ai0,μ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值