机器学习笔记2

# 1. 线性回归损失函数推导

$$ y=\theta^Tx+\epsilon $$  
------------------------------------
y表示真实结果,x表示真实数据,$\epsilon$表示误差,$\theta$表示参数  

根据中心直线定理误差$\epsilon$满足独立同分布,服从均值为0,方差为某定值$\sigma^2$的高斯分布  
相关推到如下  

$p(\epsilon^{(i)})=\frac{1}{\sqrt{2\pi}}exp(-\frac{(\epsilon^{(i)})^2}{2\sigma^2})$  
$ p(y^{(i)}|x^{(i)};\theta)=\frac{1}{\sqrt{2\pi\sigma}}exp(-\frac{(y^{(i)}-\theta^Tx^{(i)})^2}{2\sigma^2})$ 

$L(\theta) = \displaystyle\prod_{i=1}^m p(y^{(i)}|x^{(i)};\theta)$  
 $\qquad  = \displaystyle\prod_{i=1}^m \frac{1}{\sqrt{2\pi\sigma}}exp(-\frac{(y^{(i)}-\theta^Tx^{(i)})^2}{2\sigma^2})$  
 
$l(\theta) = logL(\theta) $   
$ \qquad = log \displaystyle\prod_{i=1}^m \frac{1}{\sqrt{2\pi\sigma}}exp(-\frac{(y^{(i)}-\theta^Tx^{(i)})^2}{2\sigma^2})$  
$ \qquad = \displaystyle\sum_{i=1}^{m}log \frac{1}{\sqrt{2\pi\sigma}}exp(-\frac{(y^{(i)}-\theta^Tx^{(i)})^2}{2\sigma^2})$  
$\qquad  = m log\frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^2}.\frac{1}{2} \displaystyle\sum_{i-i}^{m}(y^{(i)}-\theta^Tx^{(i)})^2$

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值