【简化数据】奇异值分解(SVD)
@author:wepon
@blog:http://blog.csdn.net/u012162613/article/details/42214205
1、简介
奇异值分解(singular Value Decomposition),简称SVD,线性代数中矩阵分解的方法。假如有一个矩阵A,对它进行奇异值分解,可以得到三个矩阵:
这三个矩阵的大小:
奇异值分解(SVD)在信息检索、图像压缩、推荐系统等领域有广泛应用。它允许非方阵的矩阵分解,与特征值分解相关,常用于PCA实现。在Python中,通过linalg.svd()可以进行SVD,但为节省空间,可能只返回非零奇异值。
@author:wepon
@blog:http://blog.csdn.net/u012162613/article/details/42214205
2815

被折叠的 条评论
为什么被折叠?