【简化数据】奇异值分解(SVD)

奇异值分解(SVD)在信息检索、图像压缩、推荐系统等领域有广泛应用。它允许非方阵的矩阵分解,与特征值分解相关,常用于PCA实现。在Python中,通过linalg.svd()可以进行SVD,但为节省空间,可能只返回非零奇异值。

【简化数据】奇异值分解(SVD)

@author:wepon

@blog:http://blog.csdn.net/u012162613/article/details/42214205


1、简介

奇异值分解(singular Value Decomposition),简称SVD,线性代数中矩阵分解的方法。假如有一个矩阵A,对它进行奇异值分解,可以得到三个矩阵:


这三个矩阵的大小:
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值