交叉熵代价函数

原创 2015年03月13日 13:18:56

本文是《Neural networks and deep learning》概览 中第三章的一部分,讲machine learning算法中用得很多的交叉熵代价函数。

1.从方差代价函数说起

代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为:

其中y是我们期望的输出,a为神经元的实际输出【 a=σ(z), where z=wx+b 】。

在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数:

然后更新w、b:

w <—— w - η* ∂C/∂w = w - η * a *σ′(z)

b <—— b - η* ∂C/∂b = b - η * a * σ′(z)

因为sigmoid函数的性质,导致σ′(z)在z取大部分值时会很小(如下图标出来的两端,几近于平坦),这样会使得w和b更新非常慢(因为η * a * σ′(z)这一项接近于0)。

2.交叉熵代价函数(cross-entropy cost function)

为了克服这个缺点,引入了交叉熵代价函数(下面的公式对应一个神经元,多输入单输出):

其中y为期望的输出,a为神经元实际输出【a=σ(z), where z=∑Wj*Xj+b】

与方差代价函数一样,交叉熵代价函数同样有两个性质

  • 非负性。(所以我们的目标就是最小化代价函数)
  • 当真实输出a与期望输出y接近的时候,代价函数接近于0.(比如y=0,a~0;y=1,a~1时,代价函数都接近0)。

另外,它可以克服方差代价函数更新权重过慢的问题。我们同样看看它的导数:

可以看到,导数中没有σ′(z)这一项,权重的更新是受σ(z)−y这一项影响,即受误差的影响。所以当误差大的时候,权重更新就快,当误差小的时候,权重的更新就慢。这是一个很好的性质。

3.总结

  • 当我们用sigmoid函数作为神经元的激活函数时,最好使用交叉熵代价函数来替代方差代价函数,以避免训练过程太慢。

  • 不过,你也许会问,为什么是交叉熵函数?导数中不带σ′(z)项的函数有无数种,怎么就想到用交叉熵函数?这自然是有来头的,更深入的讨论就不写了,少年请自行了解。

  • 另外,交叉熵函数的形式是−[ylna+(1−y)ln(1−a)]而不是 −[alny+(1−a)ln(1−y)],为什么?因为当期望输出的y=0时,lny没有意义;当期望y=1时,ln(1-y)没有意义。而因为a是sigmoid函数的实际输出,永远不会等于0或1,只会无限接近于0或者1,因此不存在这个问题。

4.还要说说:log-likelihood cost

对数似然函数也常用来作为softmax回归的代价函数,在上面的讨论中,我们最后一层(也就是输出)是通过sigmoid函数,因此采用了交叉熵代价函数。而深度学习中更普遍的做法是将softmax作为最后一层,此时常用的是代价函数是log-likelihood cost。

In fact, it’s useful to think of a softmax output layer with log-likelihood cost as being quite similar to a sigmoid output layer with cross-entropy cost。

其实这两者是一致的,logistic回归用的就是sigmoid函数,softmax回归是logistic回归的多类别推广。log-likelihood代价函数在二类别时就可以化简为交叉熵代价函数的形式。具体可以参考UFLDL教程


转载请注明出处:http://blog.csdn.net/u012162613/article/details/44239919

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012162613/article/details/44239919

交叉熵代价函数(损失函数)及其求导推导

前言 交叉熵损失函数 交叉熵损失函数的求导 前言 说明:本文只讨论Logistic回归的交叉熵,对Softmax回归的交叉熵类似。 首先,我们二话不说,先放出交叉熵的公式: J(θ)=...
  • jasonzzj
  • jasonzzj
  • 2016-07-25 00:04:44
  • 44367

交叉熵损失函数

一、香农熵 香农熵   1948 年,香农提出了“信息熵”(shāng) 的概念,才解决了对信息的量化度量问题。 一条信息的信息量大小和它的不确定性有直接的关系。比如说,我们...
  • yimingsilence
  • yimingsilence
  • 2016-10-05 23:27:35
  • 20197

简单易懂的softmax交叉熵损失函数求导

来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~ softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也...
  • qian99
  • qian99
  • 2017-09-20 22:23:33
  • 6375

理解交叉熵作为损失函数在神经网络中的作用

交叉熵的作用通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 而即便...
  • chaipp0607
  • chaipp0607
  • 2017-06-18 15:59:10
  • 4976

交叉熵和损失函数

熵,交叉熵和损失函数,在机器学习中,这些概念容易让人迷糊,基于现有的理解,简要做一下总结供参考,以后理解深刻了,在进行拓展。 对公式直接截图粘贴试了几次不能显示。难道需要一张张图上传? 后面有时间再...
  • Ychan_cc
  • Ychan_cc
  • 2017-09-15 16:08:51
  • 883

交叉熵(Cross-Entropy)

交叉熵(Cross-Entropy) 交叉熵是一个在ML领域经常会被提到的名词。在这篇文章里将对这个概念进行详细的分析。 1.什么是信息量? 假设XX是一个离散型随机变量,其取值集合为X\mat...
  • rtygbwwwerr
  • rtygbwwwerr
  • 2016-03-03 18:31:10
  • 64361

两种交叉熵损失函数的异同

两种形式的交叉熵损失函数在学习机器学习的时候,我们会看到两个长的不一样的交叉熵损失函数。 假设我们现在有一个样本 {x,t}\{ x,t\}。 * −tjlog(yj)-t_j\text{log}...
  • u012436149
  • u012436149
  • 2017-04-07 21:26:56
  • 2129

交叉熵为何能作损失函数

在很多二分类问题中,特别是正负样本不均衡的分类问题中,常使用交叉熵作为loss对模型的参数求梯度进行更新,那为何交叉熵能作为损失函数呢,我也是带着这个问题去找解析的。 以下仅为个人理解,如有不当地方...
  • wenzishou
  • wenzishou
  • 2017-08-27 18:26:30
  • 4925

交叉熵损失函数好文推荐

点击打开链接 点击打开链接
  • qq_36273293
  • qq_36273293
  • 2017-10-25 15:47:57
  • 250
收藏助手
不良信息举报
您举报文章:交叉熵代价函数
举报原因:
原因补充:

(最多只允许输入30个字)