python 堆排序

树是一种数据结构 比如 目录结构

树是一种可以递归定义的数据结构

树是由n个节点组成的集合:

  1. 如果 n=0, 那这是一颗空树
  2. 如果 n>0, 那存在1个节点作为树的根节点,其他节点可以分为m个集合,每个集合本身又是一棵树

在这里插入图片描述

根节点、叶子节点

树的深度(高度)

树的度

孩子节点/父节点

子树

在这里插入图片描述

E是I的父节点,I是E的子节点

二叉树

  1. 二叉树: 度不超过2的树
  2. 每个节点最多由两个孩子节点
  3. 两个孩子节点被区分为左孩子节点和有孩子节点

满二叉树:一个二叉树,如果每一个层的结点树都达到最大值,则这个二叉树就是满二叉树
在这里插入图片描述

完全二叉树:叶节点只能出现在最下层和次下层,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树

在这里插入图片描述

二叉树的存储方式
链式存储方式
顺序存储方式

父节点和左孩子节点的编号下标由什么关系?

0-1 1-3 2-5 3-7 4-9  i的值
i -> i*2+1 

父节点和右孩子节点的编号下标由什么关系?

	0-2 1-4 2-6 3-8 4-10  i的值
	i -> 2*i+2

在这里插入图片描述

假设孩子的节点是i 父亲的节点是(i-1)/2

堆排序

堆: 一种特殊的完全二叉树结构

  1. 大根堆: 一颗完全二叉树,满足任一节点都比其孩子节点大
  2. 小根堆: 一颗完全二叉树,满足任一节点都比其孩子节点小

在这里插入图片描述
5比8小

在这里插入图片描述

堆的向下调整性质

假设根节点的左右子树的都是堆,但根节点不满足的性质

可以通过一次向下的调整来将变成一个堆

在这里插入图片描述
当根节点的左右子树都是堆时,可以通过一次向下的调整来将其变换成一个堆

9把2推翻了,2可以当区长吗?不能那么就把8推上区,因为8比5大,2能当镇长吗?不能,把6推上去,就是下图了
在这里插入图片描述

建立一个堆,农村包围城市

堆排序过程

  1. 建立堆
  2. 得到堆顶元素,为最大元素
  3. 去掉堆顶,将堆最后一个元素放到堆顶,此时可通过一次调整重新使堆有序
  4. 堆顶元素为第二大元素
  5. 重复步骤3,知道堆变空
        else :  #tmp 更大,把tmp放到i的位置上  假如堆点是6
            li[i] = tmp  # 6放到原来8break

在这里插入图片描述

   else: #就是2没法和别的比了,就放到该去的地方去
        li[i] = tmp  #把tmp放到叶子节点上去

在这里插入图片描述

扫描 这些圈圈

在这里插入图片描述

循环3、9、1、8、6

在这里插入图片描述

def sift(li,low,hight):
    #li 列表
    # low: 堆的根节点位置 第一个元素
    # higth 堆的指向最后一个元素的位置
    # return
    #i->指当前一层 和下一个层
    #i 是市长
    #i要是大于higth 退出了
    #n-1 就是是整个堆元素最后一个下标


def sift(li,low,hight):
    i = low
    #找孩子 左孩子
    j = 2 * i +1
    tmp = li[low] #把堆顶存起来
    while  j <= hight: #只要j位置有数
        #右孩子要右,右孩子比较大 并且右孩子大于左孩子     右孩子不越界 j+1 <=hight 
        if j+1 <=hight  and li[j+1] > li[j]:
        #j 指向右孩子  这个指的是两个孩子更大的数
            j = j + 1
        if li[j] > tmp:  #目前要是,tmp大就放过去,还是j大放上面去
            li[i] = li[j]  
            i = j       #可以交换了    现在j等于新的i     i等于原来的j  往下一层
            j = 2 * i + 1
        else :  #tmp 更大,把tmp放到i的位置上  假如堆点是6
            li[i] = tmp  # 6放到原来8break
    else: #就是2没法和别的比了,就放到该去的地方去
        li[i] = tmp  #把tmp放到叶子节点上去

#最后非叶子节点
#n的最后一个下标是n-1,找他的父亲就孩子,(n-1-1)/2
#孩子下标是 n
#孩子找父亲 (n-1)/2 里面的n的最后一个下标是n-1 所有(n-1-1)/2 -> (n-2)/2


#倒序,-1,步长是-1
def heap_sort(li):
    n = len(li)
    for i in range((n-2)//2,-1,-1):
        # i 表示建堆的时候调整的部分的根的下标
        sift(li,i,n-1)
    #建堆完成了   i=n-1指的最后一个元素的  倒叙
    for i in range(n-1,-1,-1):
        # i 指向当前堆的最后一个元素  li[0]堆顶   li[i]最后一个元素
        li[0] , li[i] = li[i],li[0]   #交换
        sift(li,0,i-1) #i-1是新的high

li = [i for i in range(100)]
import random
random.shuffle(li)
print(li)

heap_sort(li)
print(li)

在这里插入图片描述

在这里插入图片描述

要不是左边,要不是右边,最多走的是树的高度层

时间复杂度 O(nlogn)

import heapq   #优先队列的 
import random

li = list(range(100))
random.shuffle(li)

print(li)

heapq.heapify(li) #建堆

n = len(li)
for i in range(n):
    print(heapq.heappop(li), end=',')

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伟伟哦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值