题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4034
题目意思:
有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。
树链剖分入门题,要注意的一点就是更新子树的时候,更新的区间应该是,[ idx[u], idx[u] + size[u] - 1 ],根据重新标号的特点,根节点肯定是最小的,而且子树里面标号肯定是连续的,所以右端点应该就是根节点标号+子树的大小。
然后就是线段树的区间更新, 区间查询了。
注意爆int, 要用long long
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
typedef long long ll;
const int maxn = 1e5+10;
struct Edge{
int to, next;
}e[maxn*2];
//
int n, m;
ll w[maxn], cnt, head[maxn];
//
int fa[maxn], top[maxn], size[maxn], son[maxn], dep[maxn];
int idx[maxn];
int pos;
//
ll sum[maxn<<2], flag[maxn<<2], len[maxn<<2];
void init()
{
cnt = pos = 0;
memset(head, -1, sizeof(head));
memset(son, -1, sizeof(son));
}
void add(int u, int v)
{
e[cnt].to = v;
e[cnt].next = head[u];
head[u] = cnt++;
}
void dfs1(int u, int pre, int deep)
{
fa[u] = pre; size[u] = 1; dep[u] = deep;
for(int i=head[u]; i!=-1; i=e[i].next)
{
int v = e[i].to;
if(v == pre) continue;
dfs1(v, u, deep+1);
size[u] += size[v];
if(son[u]==-1 || size[v] > size[son[u]]) son[u] = v;
}
}
void dfs2(int u, int anc)
{
top[u] = anc;
if(son[u] != -1)
{
idx[u] = pos++;
dfs2(son[u], anc);
}
else
{
idx[u] = pos++;
return;
}
for(int i=head[u]; i!=-1; i=e[i].next)
{
int v = e[i].to;
if(v != fa[u] && v != son[u]) dfs2(v, v);
}
}
void build(int l, int r, int rt)
{
len[rt] = r - l + 1;
flag[rt] = sum[rt] = 0;
if(l == r) return;
int m = (l + r) >> 1;
build(lson);
build(rson);
}
void pushUp(int rt)
{
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void pushDown(int rt)
{
flag[rt<<1] += flag[rt];
sum[rt<<1] += len[rt<<1] * flag[rt];
flag[rt<<1|1] += flag[rt];
sum[rt<<1|1] += len[rt<<1|1] * flag[rt];
flag[rt] = 0;
}
void update(int L, int R, ll v, int l, int r, int rt)
{
if(L <= l && r <= R)
{
flag[rt] += v;
sum[rt] += len[rt] * v;
return;
}
pushDown(rt);
int m = (l + r) >> 1;
if(L <= m) update(L, R, v, lson);
if(R > m) update(L, R, v, rson);
pushUp(rt);
}
ll query(int L, int R, int l, int r, int rt)
{
if(L <= l && r <= R) return sum[rt];
pushDown(rt);
ll ret = 0;
int m = (l + r) >> 1;
if(L <= m) ret += query(L, R, lson);
if(R > m) ret += query(L, R, rson);
return ret;
}
ll solve(int u, int v)
{
int f1 = top[u], f2 = top[v];
ll ret = 0;
while( f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1, f2);
swap(u, v);
}
ret += query(idx[f1], idx[u], 0, pos-1, 1);
u = fa[f1]; f1 = top[u];
}
if(dep[u] < dep[v]) swap(u, v);
ret += query(idx[v], idx[u], 0, pos-1, 1);
return ret;
}
int main()
{
init();
scanf("%d%d", &n,&m);
for(int i=1;i<=n;i++) scanf("%lld", &w[i]);
int u, v;
for(int i=1;i<n;i++)
{
scanf("%d%d", &u, &v);
add(u, v);
add(v, u);
}
dfs1(1, -1, 0); dfs2(1, 1);
build(0, pos-1, 1);
for(int i=1; i<=n; i++)
{
update(idx[i], idx[i], w[i], 0, pos-1, 1);
}
ll op, a, b;
while(m--)
{
scanf("%lld", &op);
if(op == 1)
{
scanf("%lld%lld", &a, &b);
update(idx[a], idx[a], b, 0, pos-1, 1);
}
else if(op == 2)
{
scanf("%lld%lld", &a, &b);
update(idx[a], idx[a] + size[a] - 1, b, 0, pos-1, 1);
}
else
{
scanf("%lld", &a);
printf("%lld\n", solve(1,a));
}
}
return 0;
}