CodeForces-50A-Domino piling

A. Domino piling
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given a rectangular board of M × N squares. Also you are given an unlimited number of standard domino pieces of 2 × 1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:

1. Each domino completely covers two squares.

2. No two dominoes overlap.

3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.

Find the maximum number of dominoes, which can be placed under these restrictions.

Input

In a single line you are given two integers M and N — board sizes in squares (1 ≤ M ≤ N ≤ 16).

Output

Output one number — the maximal number of dominoes, which can be placed.

Sample test(s)
input
2 4
output
4
input
3 3
output
4

import java.util.*;

public class DominoPiling {
	public static void main(String[] args) {
		Scanner inScanner = new Scanner(System.in);
		int m = 0, n = 0;
		int count = 0;
		m = inScanner.nextInt();
		n = inScanner.nextInt();
		if (m * n < 2)
			count=0;
		else if (n == 1) {
			count += (m / 2);// downward
		} else {

			int npart = n / 2;
			count += (npart * m);
			if(n%2==1){
				count+=(m/2);// downward
			}
		}
		System.out.println(count);
	}

}
最先写完发现过于麻烦,后经过改进后重写
import java.util.*;

public class DominoPilingPro {
	public static void main(String[] args) {
		Scanner inScanner = new Scanner(System.in);
		int m=inScanner.nextInt();
		int n=inScanner.nextInt();
		if(n%2==0){
			System.out.println(m*n/2);
		}
		else {
			System.out.println(m*n/2+m/2);
		}
	}
}
多余的过程在于对边长的判断。其实,在运用“/”进行除法运算的过程中,整数相除采用了向下取证的方法,因此当边长不及多米诺牌长时,会出现除数比被除数大的情况,因而结果会取0,不需要在开头进行繁杂判断。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值