题目描述:
You are given a rectangular board of M × N squares. Also you are given an unlimited number of standard domino pieces of 2 × 1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
-
Each domino completely covers two squares.
-
No two dominoes overlap.
-
Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
输入描述:
In a single line you are given two integers M and N — board sizes in squares (1 ≤ M ≤ N ≤ 16).
输出描述:
Output one number — the maximal number of dominoes, which can be placed.
输入:
2 4
3 3
输出:
4
4
题意:
你有一个NM的方形空间,你有若干块12的多米诺骨牌,你可以旋转多米诺骨牌,你要尽可能多的摆放多米努骨牌,摆放时遵循以下规则:
-
每一块多米诺骨牌完全占据两个正方形的空间。
-
没有多米诺骨牌重叠。.
-
没有多米诺骨牌超出方形空间边界。
找出能摆的多米诺骨牌的最大数量.
题解:
直接n*m/2
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int main(){
int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
int ans = n * m / 2;
printf("%d\n",ans);
}
return 0;
}

探讨在一个M×N的矩形板上放置标准2×1多米诺骨牌的问题,目标是找到最多能放置多少块多米诺骨牌,且每块骨牌完全覆盖两个正方形,不重叠并完全位于板内。
328

被折叠的 条评论
为什么被折叠?



