读书笔记(二)

感知机 (perceptron)

神经元会计算传送过来的信号的总和,只有当这个总和超过了某个界限值时,才会输出1。这也称为“神经元被激活” 。这里将这个界限值称为阈值,用符号 θ表示

感知机的多个输入信号都有各自固有的权重,这些权重发挥着控制各个信号的重要性的作用。也就是说,权重越大,对应该权重的信号的重要性就越高。

权重相当于电流里所说的电阻。电阻是决定电流流动难度的参数,电阻越低,通过的电流就越大。而感知机的权重则是值越大,通过的信号就越大。不管是电阻还是权重,在控制信号流动难度(或者流动容易度)这一点上的作用都是一样的。
 

信号的加权总和  xw+yv   x,y为信号,w,v为权重

 

简单的逻辑电路

下面考虑用感知机来表示这个与门。需要做的就是确定能满足图2-2的真值表的 w1、 w2、 θ的值

实际上,满足图2-2的条件的参数的选择方法有无数多个。比如,当(w1, w2, θ) = (0.5, 0.5, 0.7) 时,可以满足图 2-2 的条件。此外,当 (w1, w2, θ)为(0.5, 0.5, 0.8)或者(1.0, 1.0, 1.0)时,同样也满足与门的条件。设定这样的参数后,仅当x1和x2同时为1时,信号的加权总和才会超过给定的阈值 θ。

这里决定感知机参数的并不是计算机,而是我们人。我们看着真值表这种“训练数据”,人工考虑(想到)了参数的值。而机器学习的课题就是将这个决定参数值的工作交由计算机自动进行。 学习是确定合适的参数的过程,而人要做的是思考感知机的构造(模型),并把训练数据交给计算机。

我们知道使用感知机可以表示与门、与非门、或门的逻辑电路。这里重要的一点是:与门、与非门、或门的感知机构造是一样的。实际上, 3个门电路只有参数的值(权重和阈值)不同。也就是说,相同构造的感知机,只需通过适当地调整参数的值,就可以像“变色龙演员”表演不同的角色一样,变身为与门、与非门、或门。

 

把 θ换成-b

b称为偏置, w1和w2称为权重
w1和w2是控制输入信号的重要性的参数,而偏置是调整神经元被激活的容易程度(输出信号为1的程度)的参数。比如,若b为
-0.1,则只要输入信号的加权总和超过0.1,神经元就会被激活。但是如果b为-20.0,则输入信号的加权总和必须超过20.0,神经元才会被激活。像这样,偏置的值决定了神经元被激活的容易程度。另外,这里我们将w1和w2称为权重,将b称为偏置,但是根据上下文,有时也会将b、 w1、 w2这些参数统称为权重
 

感知机的局限性

使用感知机可以实现与门、与非门、或门三种逻辑电路。现在我们来考虑一下异或门(XOR gate)

异或门也被称为逻辑异或电路

或门的情况下,当权重参数(b, w1, w2) = (-0.5, 1.0, 1.0)时,感知机可用下面的式表示。

式表示的感知机会生成由直线-0.5 + x1 + x2 = 0分割开的两个空间。其中一个空间输出1,另一个空间输出0,如图所示

 

或门在(x1, x2) = (0, 0)时输出0,在(x1, x2)为(0, 1)、 (1, 0)、 (1, 1)时输出1。图2-6中,○表示0,△表示1。如果想制作或门,需要用直线将图2-6中的○和△分开。实际上,刚才的那条直线就将这4个点正确地分开了。那么,换成异或门的话会如何呢?能否像或门那样,用一条直线作出分割图2-7中的○和△的空间呢?

想要用一条直线将图2-7中的○和△分开,无论如何都做不到。事实上,用一条直线是无法将○和△分开的
 

线性和非线性

感知机的局限性就在于它只能表示由一条直线分割的空间。图2-8这样弯曲的曲线无法用感知机表示。另外,由图2-8这样的曲线分割而成的空间称为非线性空间,由直线分割而成的空间称为线性空间

 

多层感知机

感知机的绝妙之处在于它可以“叠加层”

已有门电路的组合
异或门的制作方法有很多,其中之一就是组合我们前面做好的与门、与非门、或门进行配置。这里,与门、与非门、或门用图2-9中的符号表示。另外,图2-9中与非门前端的○表示反转输出的意思

严格地讲,应该是“单层感知机无法表示异或门”或者“单层感知机无法分离非线性空间”。接下来,我们将看到通过组合感知机(叠加层)就可以实现异或门

与门、或门是单层感知机,而异或门是2层感知机。叠加了多层的感知机也称为多层感知机(multi-layered perceptron)



通过这样的结构(2层结构),感知机得以实现异或门。这可以解释为“单层感知机无法表示的东西,通过增加一层就可以解决”。也就是说,通过叠加层(加深层),感知机能进行更加灵活的表示。

 

从与非门到计算机
 

多层感知机可以实现比之前见到的电路更复杂的电路。比如,进行加法运算的加法器也可以用感知机实现。此外,将二进制转换为十进制的编码器、满足某些条件就输出1的电路(用于等价检验的电路)等也可以用感知机表示。实际上,使用感知机甚至可以表示计算机!
计算机是处理信息的机器。向计算机中输入一些信息后,它会按照某种既定的方法进行处理,然后输出结果。所谓“按照某种既定的方法进行处理”是指,计算机和感知机一样,也有输入和输出,会按照某个既定的规则进行计算。
人们一般会认为计算机内部进行的处理非常复杂,而令人惊讶的是,实际上只需要通过与非门的组合,就能再现计算机进行的处理。这一令人吃惊的事实说明了什么呢?说明使用感知机也可以表示计算机。前面也介绍了,与非门可以使用感知机实现。也就是说,如果通过组合与非门可以实现计算机的话,那么通过组合感知机也可以表示计算机(感知机的组合可以通过叠加了多层的单层感知机来表示)。
综上,多层感知机能够进行复杂的表示,甚至可以构建计算机
理论上可以说 2层感知机就能构建计算机。这是因为,已有研究证明,2层感知机(严格地说是激活函数使用了非线性的 sigmoid函数的感知机,具体请参照下一章)可以表示任意函数。但是,使用 2层感知机的构造,通过设定合适的权重来构建计算机是一件非常累人的事情。实际上,在用与非门等低层的元件构建计算机的情况下,分阶段地制作所需的零件(模块)会比较自然,即先实现与门和或门,然后实现半加器和全加器,接着实现算数逻辑单元(ALU),然后实现CPU。因此,通过感知机表示计算机时,使用叠加了多层的构造来实现是比较自然的流程。
感知机通过叠加层能够进行非线性的表示,理论上还可以表示计算机进行的处理
 

单层感知机只能表示线性空间,而多层感知机可以表示非线性空间。
多层感知机(在理论上)可以表示计算机。


 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页