在说明前,我也是查了大量文档,弄清楚各个名词的意思,才写下这篇博客。。。
特征值和特征向量:
根据公式:
A是n*n的方阵(必须是方阵),x是特征向量,λ是特征值。
一般情况下,会有n个特征值,和n个特征向量。(这里的一般是指方阵是满秩,各行各列都是线性无关)。
引出问题:如果不是n*n维的矩阵,怎么求?
假设矩阵X是m*n,则可以求或
矩阵的特征分解。
一般的非方阵的特征分解称为奇异值分解。
奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。
奇异值分解SVD:
A是m*n大小的矩阵
根据公式:
U是左奇异矩阵
同理V是右奇异矩阵
剩下一个S:奇异值矩阵,理论上S的大小应该是m*n才能满足矩阵乘法运算。
=》
=》
理解:, V是单位正交基,不知道的可百度。
理解:,S是奇异值,一般的是n行一列的矩阵,为了方便计算,我们设计S变成对角矩阵