OpenCV——相当通俗易懂的SVD奇异值分解

在说明前,我也是查了大量文档,弄清楚各个名词的意思,才写下这篇博客。。。

特征值和特征向量:

根据公式:Ax = \lambda x

A是n*n的方阵(必须是方阵),x是特征向量,λ是特征值。

一般情况下,会有n个特征值,和n个特征向量。(这里的一般是指方阵是满秩,各行各列都是线性无关)。

引出问题:如果不是n*n维的矩阵,怎么求?

假设矩阵X是m*n,则可以求XX^TX^TX矩阵的特征分解。

一般的非方阵的特征分解称为奇异值分解。

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。

奇异值分解SVD:

A是m*n大小的矩阵

根据公式:A = USV^T

U是左奇异矩阵

同理V是右奇异矩阵

剩下一个S:奇异值矩阵,理论上S的大小应该是m*n才能满足矩阵乘法运算。

A = USV^T =》 AA^T = USV^TVS^TU^T =》 US^2U^T

理解:V^TV = I, V是单位正交基,不知道的可百度。

理解:SS^T = S^2,S是奇异值,一般的是n行一列的矩阵,为了方便计算,我们设计S变成对角矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值