二维数组中的查找

题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

分析:这是一道搜索题目,在一个给定的二维数组中搜索给定的数字。

思路一:最直接的思路是遍历数组中的每一个元素并比较。

思路二:显然,这样没有充分利用已知条件,二维数组行、列元素的有序性。考虑到给定的二维数组在行和列上是有序的。故对每一行,我们可以使用二分查找,再对所有的行执行二分查找,即可得到解答。该算法的时间复杂度为O(mlogn)。

思路三:要充分利用已知条件,就要在求解过程中同时使用行有序且列有序的条件。因为行从左向右递增,列从上到下递增,所以我们可以选择一个元素,将该元素和target比较,根据比较结果决定搜索方向。

为了保证搜索的简单、有序,考虑从二维数组的四个角元素中选择一个作为第一个比较的元素。四个角分别是:左上、左下、右上、右下。因为左上角的元素向右、向上都递增,所以比较后有可能产生两条搜索路径,这样会增大程序的复杂度。所以排除从左上角开始搜索的思路。同理可排除从右下角开始搜索。

我们不妨选择从左下开始搜索,左下角的元素向上递减,向右递增。将target与该元素比较后,即可根据比较结果得到一条搜索路径。如果target < element则向上搜索,如果target > element则向右搜索,相等则返回。

思路三对应的代码如下:

public class Solution {
     public static boolean Find( int target,  int [][] array) {
         int row = array.length;
         int column = array[ 0 ].length;
 
         int currentRow = row -  1 ;
         int currentColumn =  0 ;
 
         while (currentRow < row && currentRow >=  0 && currentColumn < column && currentColumn >= 0 ) {
             if (target > array[currentRow][currentColumn]) {
//向右搜索
                 currentColumn = currentColumn +  1 ;
 
             else if (target < array[currentRow][currentColumn]) {
//向上搜索
                 currentRow = currentRow -  1 ;
             else {
                 return true ;
             }
         }
 
 
         return false ;
     }
}

在最坏情况下,这种搜索算法向右走了m行,向上走了n列。故该算法最坏情况下的时间复杂度为O(m+n)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值