【Spark】重分区

重分区的两种方式(coalesce与reparation):

dataset(spark2.0以上,dataset/dataframe):coalesce(shuffle=false);reparation(shuffle=true,且可按column进行分区);

rdd:coalesce(默认shuffle=false,可传参数,开启shuffle);reparation(shuffle=true)。

spark2.10中重分区方法源码:

  def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    coalesce(numPartitions, shuffle = true)
  }

def coalesce(numPartitions: Int, shuffle: Boolean = false,
               partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
              (implicit ord: Ordering[T] = null)
      : RDD[T]{
...
}

  def repartition(numPartitions: Int): Dataset[T] = withTypedPlan {
    Repartition(numPartitions, shuffle = true, logicalPlan)
  }

  def repartition(numPartitions: Int, partitionExprs: Column*): Dataset[T] = withTypedPlan {
    RepartitionByExpression(partitionExprs.map(_.expr), logicalPlan, Some(numPartitions))
  }

  def coalesce(numPartitions: Int): Dataset[T] = withTypedPlan {
    Repartition(numPartitions, shuffle = false, logicalPlan)
  }

shuffle开关的区别(见图):

在增大分区时,一定涉及到shuffle write,此时shuffle=false,重分区失效;

在减小分区时,shuffle=true的并行度高于shuffle=false。

shuffle=true时,在reparation时拆分成stage(rdd宽依赖),经历MapPartitionsRDD、CoalescedRDD、ShuffledRowRDD

shuffle=false时,不会拆分stage(rdd窄依赖),只有CoalescedRDD;

rdd coalesce(shuffle=false):

rdd coalesce(shuffle=true):(原本satge2被拆分)

 

 

总结:一般来说,在减小区数时,分区数差距较小、数据量较小shuffle=false,反之shuffle=true

注:shuffle=false时,reparation前需要有action操作,否则前面的transform操作的task数都会受限!

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值