PriorityQueue使用

转载 : PriorityQueue详解
深入理解Java PriorityQueue
最初的起因是我阅读文档不仔细,使用PriorityQueue出现了问题。我刚开始只是把它当作一个一般的FIFO实现来使用,结果发现poll()的结果跟我想象的不一样,后来才发现,PriorityQueue会对入队的元素进行排序,所以在队列顶端的总是最小的元素。(并非所有元素排序)

有趣的是,我在仔细阅读文档以前,曾经用调试器察看了我的PriorityQueue,所以即便我后来阅读文档知道了它的正确行为,却发现内部实现似乎跟我想象的不同。把问题简化成下面的代码:

    public static void main(String[] args) {
        PriorityQueue<String> pq = new PriorityQueue<String>();
        pq.add("dog");
        pq.add("apple");
        pq.add("fox");
        pq.add("easy");
        pq.add("boy");

        while (!pq.isEmpty()) {
            for (String s : pq) {
                System.out.print(s + " ");
            }
            System.out.println();
            System.out.println("pq.poll(): " + pq.poll());
        }
    }

输出的结果如下:

apple boy fox easy dog
pq.poll(): apple
boy dog fox easy
pq.poll(): boy
dog easy fox
pq.poll(): dog
easy fox
pq.poll(): easy
fox
pq.poll(): fox

可以看到,虽然PriorityQueue保持了队列顶部元素总是最小,但内部的其它元素的顺序却随着元素的减少始终处于变化之中。由于没有总结出有效的规律,我决定察看源代码来一探究竟。最终跟踪到函数private void siftUpComparable(int k, E x),定义如下:

  private void siftUpComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>) x;
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            if (key.compareTo((E) e) >= 0)
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = key;
    }

相对于add的操作,该函数的入口参数k是指新加入元素的下标,而x就是新加入的元素。乍一看,这个函数的实现比较令人费解,尤其是parent的定义。通过进一步分析了解到,PriorityQueue内部成员数组queue其实是实现了一个二叉树的数据结构,这棵二叉树的根节点是queue[0],左子节点是queue[1],右子节点是queue[2],而queue[3]又是queue[1]的左子节点,依此类推,给定元素queue[i],该节点的父节点是queue[(i-1)/2]。因此parent变量就是对应于下标为k的节点的父节点。

弄清楚了这个用数组表示的二叉树,就可以理解上面的代码中while循环进行的工作是,当欲加入的元素小于其父节点时,就将两个节点的位置交换。这个算法保证了如果只执行add操作,那么queue这个二叉树是有序的:该二叉树中的任意一个节点都小于以该节点为根节点的子数中的任意其它节点。这也就保证了queue[0],即队顶元素总是所有元素中最小的。

需要注意的是,这种算法无法保证不同子树上的两个节点之间的大小关系。举例来说,queue[3]一定会小于queue[7],但是未必会小于queue[9],因为queue[9]不在以queue[3]为根节点的子树上。

弄清楚了add的操作,那么当队列中的元素有变化的时候,对应的数组queue又该如何变化呢?察看函数poll(),最终追中到函数private E removeAt(int i),代码如下:

     private E removeAt(int i) {
        assert i >= 0 && i < size;
        modCount++;
        int s = --size;
        if (s == i) // removed last element
            queue[i] = null;
        else {
            E moved = (E) queue[s];
            queue[s] = null;
            siftDown(i, moved);
            if (queue[i] == moved) {
                siftUp(i, moved);
                if (queue[i] != moved)
                    return moved;
            }
        }
        return null;
    }

这个函数的实现方法是,将队尾元素取出,插入到位置i,替代被删除的元素,然后做相应的调整,保证二叉树的有序,即任意节点都是以它为根节点的子树中的最小节点。进一步的代码就留给有兴趣的读者自行分析,要说明的是,对于queue这样的二叉树结构有一个特性,即如果数组的长度为length,那么所有下标大于length/2的节点都是叶子节点,其它的节点都有子节点。

总结:可以看到这种算法的实现,充分利用了树结构在搜索操作时的优势,效率又高于维护一个全部有序的队列。

补充:

堆排序只能保证根是最大(最小),不能保证整体是按照顺序来排序的

PriorityQueue是个基于优先级堆的极大优先级队列。
此队列按照在构造时所指定的顺序对元素排序,既可以根据元素的自然顺序来指定排序(参阅 Comparable),
也可以根据 Comparator 来指定,这取决于使用哪种构造方法。优先级队列不允许 null 元素。
依靠自然排序的优先级队列还不允许插入不可比较的对象(这样做可能导致 ClassCastException)。
此队列的头是按指定排序方式的最小元素。如果多个元素都是最小值,则头是其中一个元素——选择方法是任意的。
队列检索操作 poll、remove、peek 和 element 访问处于队列头的元素。
优先级队列是无界的,但是有一个内部容量,控制着用于存储队列元素的数组的大小。
它总是至少与队列的大小相同。随着不断向优先级队列添加元素,其容量会自动增加。无需指定容量增加策略的细节。
注意1:该队列是用数组实现,但是数组大小可以动态增加,容量无限。
注意2:此实现不是同步的。不是线程安全的。如果多个线程中的任意线程从结构上修改了列表, 则这些线程不应同时访问 PriorityQueue 实例,这时请使用线程安全的PriorityBlockingQueue 类。
注意3:不允许使用 null 元素。
注意4:此实现为插入方法(offer、poll、remove() 和 add 方法)提供 O(log(n)) 时间;
为 remove(Object) 和 contains(Object) 方法提供线性时间;
为检索方法(peek、element 和 size)提供固定时间。
注意5:方法iterator()中提供的迭代器并不保证以有序的方式遍历优先级队列中的元素。
至于原因可参考下面关于PriorityQueue的内部实现
如果需要按顺序遍历,请考虑使用 Arrays.sort(pq.toArray())。
注意6:可以在构造函数中指定如何排序。如:
PriorityQueue()
使用默认的初始容量(11)创建一个 PriorityQueue,并根据其自然顺序来排序其元素(使用 Comparable)。
PriorityQueue(int initialCapacity)
使用指定的初始容量创建一个 PriorityQueue,并根据其自然顺序来排序其元素(使用 Comparable)。
PriorityQueue(int initialCapacity, Comparator

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值