opencv知识点总结(主要是函数总结)

本文详细介绍如何使用计算机视觉技术从图片中提取水果的特征,包括周长、面积、颜色、长度和宽度等。通过运用cv.Sobel()进行梯度特征提取,cv.Canny()实现边缘检测,cv.findContours()寻找轮廓,cv.boundingRect()绑定边框,以及计算像素点数来测量面积和周长,最后通过计算平均RGB值来确定颜色。
摘要由CSDN通过智能技术生成

提取图片中水果特征(周长、面积、颜色、长度、宽度)用到的知识点:

参考链接

  • 提取梯度特征:
    cv.Sobel()
  • 提取边缘:
    cv.Canny()
  • 寻找轮廓
    cv.findContours()
  • 为轮廓绑定边框
    cv.boundingRect()
  • 画出提取到的轮廓
    cv.drawContours()
  • 画出绑定的边框
    cv.rectangle()
  • 计算某区域面积:
    只要数出待计算区域的像素点数即可
  • 就算某区域周长
    只要输出带计算区域边缘的像素个数即可
  • 提取颜色:
    即:待提取区域的平均颜色,结果为一个RGB元组
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值