- 博客(59)
- 收藏
- 关注
转载 TensorFlow各版本下载地址,强烈推荐
TensorFlow各版本自主下载地址:cpu版本:https://pypi.python.org/pypi/tensorflow/1.4.0gpu版本:https://pypi.python.org/pypi/tensorflow-gpu/1.4.0现在不提供下载了,只...
2018-05-09 21:07:44 15860 3
转载 Tensorflow Deep MNIST: Resource exhausted: OOM when allocating tensor with shape[10000,32,28,28]
Tensorflow Deep MNIST: Resource exhausted: OOM when allocating tensor with shape[10000,32,28,28] 原创 ...
2018-04-04 10:14:56 1801
转载 OpenCV3.0.0+VS2013+Win10(64)的永久性配置
VS2013下OpenCV3.0环境配置听语音|浏览:15792|更新:2015-09-01 21:11|标签:硬件 1234567分步阅读 void function(e,t){for(var n=t.getElementsByTagName("img"),a=+new Date,i=[],o=function(){this.removeEventListener&&...
2018-04-01 22:34:26 500
转载 VS2013 永久性配置opencv3.0.0
VS2013永久配置opencv3.0 原创 2016年12月14日 20:36:37 <ul class="article_tags clea...
2018-04-01 22:30:31 349
转载 技术向:一文读懂卷积神经网络
卷积神经网络 <div class="article_manage clearfix"> <div class="article_l"> <span class="link_categories"> 标签: <a href="http://www.csdn.net/tag/%e5%
2018-01-13 18:56:39 274
转载 TensorFlow 官方文档中文版
https://www.w3cschool.cn/tensorflow_python/tensorflow_python-u7wa28vm.html
2018-01-09 10:34:04 7686
转载 Python的zip函数
http://www.cnblogs.com/frydsh/archive/2012/07/10/2585370.html
2018-01-08 21:45:44 167
转载 一元线性回归方程
收藏查看我的收藏120有用+1已投票9一元线性回归方程编辑锁定一元线性回归方程反映一个因变量与一个自变量之间的线性关系,当<a target="_blank" href="/item/%E7%9B%B4%E7
2017-12-27 09:12:51 868
转载 Tensorflow一些常用基本概念与函数(2)
摘要:本文主要对tf的一些常用概念与方法进行描述。为‘Tensorflow一些常用基本概念与函数’系列之二。1、tensorflow的基本运作为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始:import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf.placeholder("float") b = tf.placehold
2017-12-21 10:35:08 276
转载 tensorflow学习之路(4):tf.shape(xxx) vs. xxx.get_shape()
tf.shape(xxx) 和 xxx.get_shape()比较相同点:都可以得到tensor xxx 的尺寸不同点:tf.shape(xxx)中xxx数据的类型可以是tensor,list,array;而xxx.get_shape()中的xxx的数据类型必须是tensor,且返回的是一个tuple.可以通过xxx.get_shape().as_list()得到一个list。例如:
2017-12-21 10:32:44 185
转载 python开源库——h5py快速指南
1. 核心概念一个HDF5文件是一种存放两类对象的容器:dataset和group. Dataset是类似于数组的数据集,而group是类似文件夹一样的容器,存放dataset和其他group。在使用h5py的时候需要牢记一句话:groups类比词典,dataset类比Numpy中的数组。HDF5的dataset虽然与Numpy的数组在接口上很相近,但是支持更多对外透明的存储特征,如数
2017-12-19 21:33:15 419
转载 Ubuntu下如何安装TensorFlow
Ubuntu下如何安装TensorFlow原创 2016年06月26日 15:29:40标签: ubuntu/ tensorflow/ jupyter/ anaconda/ 48788 编辑删除本文目录引言基于Anaconda的tensorflow安装1 下载linux版本的Anaconda安装包2 安
2017-12-19 21:08:02 246
转载 Dropout浅层理解与实现
Dropout浅层理解与实现原文地址:http://blog.csdn.net/hjimce/article/details/50413257作者:hjimce一、相关工作 本来今天是要搞《Maxout Networks》和《Network In Network》的,结果发现maxout和dropout有点类似,所以就对dropout做一下相关的总结,了解一下
2017-12-19 18:03:21 300
转载 TensorFlow 中三种启动图 用法
介绍 TensorFlow 中启动图: tf.Session(),tf.InteractivesSession(),tf.train.Supervisor().managed_session() 用法的区别:(1)tf.Session() 构造阶段完成后, 才能启动图. 启动图的第一步是创建一个 Session 对象, 如果无任何创建参数, 会话构造器将启动
2017-12-15 12:56:06 411
转载 TensorFlow 辨异 —— tf.placeholder 与 tf.Variable
TensorFlow 辨异 —— tf.placeholder 与 tf.Variable原创 2017年03月12日 23:51:47标签: placeholde/ variable/ 14020 编辑删除二者的主要区别在于:tf.Variable:主要在于一些可训练变量(trainable variables),比如模
2017-12-15 12:55:04 150
转载 TensorFlow中的onehot有什么作用,为什么要使用onehot向量呢?
<div class="ContentItem AnswerItem" data-zop="{"authorName":"郑文勋","itemId":133150781,"title":"TensorFlow中的onehot有什么作用,为什么要使用onehot向量呢?","type&quo
2017-12-15 12:52:43 606
转载 numpy.eye() 生成对角矩阵
numpy.eye() 生成对角矩阵转载 2017年02月23日 23:57:22标签: 3012 编辑删除numpy.eye(N,M=None, k=0, dtype=)关注第一个第三个参数就行了第一个参数:输出方阵(行数=列数)的规模,即行数或列数第三个参数:默认情况下输出的是对角线全“1”,其余全“0”的方阵,如
2017-12-14 17:33:22 4392
转载 Python 之 使用 PIL 库做图像处理
way_testlife不会写代码的测试员不是好产品经理。博客园 首页 新随笔 联系 订阅 管理posts - 105, comments - 67, trackbacks - 0Python 之 使用 PIL 库做图像处理1. 简介。 图像处理是一门应用非常广的技术,而拥有非常丰富第三方扩展库的
2017-12-14 17:21:58 529
转载 scipy模块介绍
scipy模块介绍转载 2013年12月23日 14:03:42标签: 3071 编辑删除SciPy 是基于Numpy构建的一个集成了多种数学算法和方便的函数的Python模块。通过给用户提供一些高层的命令和类,SciPy在python交互式会话中,大大增加了操作和可视化数据的能力。通过SciPy,Python的交互式会话变成了一个数据处理和一个sy
2017-12-14 17:17:23 587
转载 Numpy学习——数组填充np.pad()函数的应用
Numpy学习——数组填充np.pad()函数的应用2017-12-05 08:19:31来源:CSDN作者:zenghaitao012814人点击分享在卷积神经网络中,为了避免因为卷积运算导致输出图像缩小和图像边缘信息丢失,常常采用图像边缘填充技术,即在图像四周边缘填充0,使得卷积运算后图像大小不会缩小,同时也不会丢失边缘和角落的信息。在Pytho
2017-12-14 15:57:44 25235
转载 matplotlib的配置参数rcParams
matplotlib的配置参数rcParams原创 2016年03月03日 22:23:36标签: 5655 编辑删除配置文件的读入可以使用 rc_params 函数,它返回一个配置字典:matplotlib.rc_params() {‘agg.path.chunksize’: 0, ‘axes.axisbelow’:
2017-12-14 15:49:09 4700
转载 pandas中apply函数的用法
pandas中apply函数的用法2017-05-25 21:40 5550人阅读 评论(0)收藏举报分类: Python(9) 作者同类文章X版权声明:本文为博主原创文章,未经博主允许不得转载。最近在使用apply函数,总结一下用法。apply函数可以对DataFrame对象进行操作,
2017-12-13 15:25:21 3657
转载 Python数据分析之pandas学习
Python中的pandas模块进行数据分析。接下来pandas介绍中将学习到如下8块内容:1、数据结构简介:DataFrame和Series2、数据索引index3、利用pandas查询数据4、利用pandas的DataFrames进行统计分析5、利用pandas实现SQL操作6、利用pandas进行缺失值的处理7、利用pandas实现Excel的数据透视表功能
2017-12-13 15:02:10 1473
转载 Pandas——ix vs loc vs iloc区别
Different Choices for Indexing1. loc——通过行标签索引行数据1.1 loc[1]表示索引的是第1行(index 是整数)[python] view plain copyprint?import pandas as pd data = [[1,2,3],[4,5,6]] index = [0,
2017-12-13 14:58:39 234
转载 Pandas入门(二)——DataFrame结构及常用操作
继上一篇文章,这篇文章介绍一下Pandas模块里面的DataFrame结构1. 介绍DataFrame unifies two or more Series into a single data structure.Each Series then represents a named column of the DataFrame, and instead of each column
2017-12-13 10:39:36 309
转载 Pandas模块入门(一)——Series结构介绍
Pandas模块是Python用于数据导入及整理的模块,对数据挖掘前期数据的处理工作十分有用,因此这些基础的东西还是要好好的学学。Pandas模块的数据结构主要有两:1、Series ;2、DataFrame 这次就先了解一下Series结构。1. 介绍The Series is the primary building block of pandas and represents
2017-12-13 10:27:26 553
转载 基于Windows10 x64+visual Studio2013+Python2.7.12环境下的Caffe配置学习
基于Windows10 x64+visual Studio2013+Python2.7.12环境下的Caffe配置学习2016-11-18 15:24 by marso, 9661 阅读, 1 评论, 收藏, 编辑本文在windows下使用visual studio2013配置关联python(python-2.7.12.amd64.msi)的caffe项目,如果有耐心的人
2017-12-09 10:43:31 323
转载 python numpy.shape 和 numpy.reshape函数
python numpy.shape 和 numpy.reshape函数标签: pythonnumpy2015-10-24 11:39 36897人阅读 评论(0)收藏举报分类: python(76) 作者同类文章X版权声明:本文为博主原创文章,未经博主允许不得转载。导入
2017-12-08 21:23:49 1164
转载 Python中time模块详解(转)
Python中time模块详解(转)在平常的代码中,我们常常需要与时间打交道。在Python中,与时间处理有关的模块就包括:time,datetime以及calendar。这篇文章,主要讲解time模块。在开始之前,首先要说明这几点:在Python中,通常有这几种方式来表示时间:1)时间戳 2)格式化的时间字符串 3)元组(struct_time)共九个元素。由于Pyt
2017-12-08 20:48:18 1069
转载 numpy 轴与维度的理解
numpy 轴与维度的理解2017-07-23 19:19 1593人阅读 评论(0)收藏举报分类: Python(6) 作者同类文章X版权声明:本文为博主原创文章,未经博主允许不得转载。NumPy’s main object is the homogeneous multidime
2017-12-08 12:50:33 473
转载 numpy中多维数组的轴(axis)
numpy中多维数组的轴(axis)原创 2016年01月14日 08:49:11标签: 9060 编辑删除多维数组的轴(axis=)是和该数组的size(或者shape)的元素是相对应的;>>> np.random.seed(123)>>> X = np.random.randint(0, 5, [3, 2, 2])>>> prin
2017-12-08 12:38:24 2851
转载 numpy 维度与轴
Albert ChenAlbert Chen 的个人博客首页 分类 归档 标签 关于 numpy 维度与轴 发表于 2016-09-01 | 分类于编程语言 | 我知道 numpy 是多维数组,但是一直不理解其轴 axis 的概念,以及基于轴之上的计算。今天写了些实例终于理解了。
2017-12-08 12:25:37 754
转载 numpy中的ndarray对象
原文地址:http://hyry.dip.jp/tech/book/page/scipy/numpy_ndarray.htmlndarray对象函数库的导入本书的示例程序假设用以下推荐的方式导入NumPy函数库:import numpy as np创建NumPy的函数和方法都有详细的说明文档和用法示例。在IPyt
2017-12-08 10:27:21 750
转载 【数字的可视化:python画图之散点图sactter函数详解】
最近开始学习python编程,遇到scatter函数,感觉里面的参数不知道什么意思于是查资料,最后总结如下:1、scatter函数原型2、其中散点的形状参数marker如下:3、其中颜色参数c如下:4、基本的使用方法如下:[python] view plain copyprint?#导入必要的模块 import nump
2017-12-07 21:57:48 545
转载 Python lambda介绍
在学习python的过程中,lambda的语法时常会使人感到困惑,lambda是什么,为什么要使用lambda,是不是必须使用lambda? 下面就上面的问题进行一下解答。 1、lambda是什么? 看个例子: 1 g = lambda x:x+1 看一下执行的结果: g(1) >>>2 g(2) >>>3 当然,你也
2017-12-07 21:37:26 171 1
转载 win10家庭版怎样administrator登陆
WIN8中文版WIN10家庭版无法打开Administrator账户,管理工具里面没有“本地用户和组”这个选项下面看我如何打开这个用户第一步,同时按下ctrl+alt+del三个键,调出任务管理器第二步,点“文件”--“运行新任务”第三步,在打开那里输入“net user administrator /active:yes”,然后下面√选“以系统管理员权限建此任务”
2017-12-06 14:39:55 4040 1
转载 Caffe源码(一):math_functions 分析
目录目录主要函数caffe_cpu_gemm 函数caffe_cpu_gemv 函数caffe_axpy 函数caffe_set 函数caffe_add_scalar 函数caffe_copy 函数caffe_scal 函数caffeine_cup_axpby 函数caffe_add caffe_sub caffe_mul caffe_div 函数caffe_pow
2017-12-02 16:19:56 154
转载 caffe添加新层教程
时间节点2016.04,即caffe重大更新后(每一种层都对应一个同名cpp和hpp文件)。描述一下本次要实现层的功能:正向直接copy传播,反向时将梯度放缩指定倍。这个层对一些特定的网络结构有很重要的辅助作用,比如有时我们的网络存在分支,但我们不希望某一分支影响之前层的更新,那么我们就将梯度放缩0倍。(1)创建HPP头文件diff_cutoff_layer.hpp不同功能类型
2017-12-02 16:18:27 244
转载 MATLAB实现的车牌定位系统
MATLAB实现的车牌定位系统看完《数字图像处理后》,做的图像识别的入门级项目,代码在: https://github.com/zhoulukuan/Plate-Location ,论文都可以在知网里找到,我就不贴了。具体项目的一些简介可以看github,大致上讲,可以分为颜色检测、区域操作、车牌检测算法和夜晚下的Retinex算法四个环节。颜色检测选用颜色检测的好处是在于定位比较
2017-11-25 10:25:32 2927
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人