题目:
Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
给定两个单词(start 和 and ),以及一个字典,找出从 start 到 end 最短变换序列的长度。
1、一次只能改变一个字母。
2、每个中间词必须在字典中存在。
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,(从 hit 到 cog ,每个单词变化一个字母)
return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.(如果找不到序列,则返回0)。
- All words have the same length.(所有的单词都有相同的长度)。
- All words contain only lowercase alphabetic characters.(所有的单词只包含小写字母)。
思路:
可以使用BFS和DFS,但是DFS会超时,具体分析请看代码。
代码1:
//BFS 1,广度优先搜索,即是(先把start入队列,作为第一层)先找到start能到达的单词(即和当前单词只差一个字母的单词),把它们全部入队列(定义为第二层),
//然后分别对第二层的单词找到它们能到达的单词,再把它们全部入队列(定义为第三层),依次类推,直到找到达到的单词为end。每遍历完一层所求长度+1.
//这里有一个问题就是重复问题,需要定义一个集合用于保存找到的所有单词,用于后续判重
class Solution {
public:
int ladderLength(string start, string end, unordered_set<string> &dict)
{
if(start.size()!=end.size())
return 0;
if(start == end)
return 2;
int min_value = 1;//存储结果长度,初始值有start,所以为1
unordered_set<string> unique;//存储符合条件的单词,主要用于判重(判断后续查找到的单词是否重复)
unique.insert(start);//先把第一层的单词start放入集合
queue<string> que;//队列用于按层次保存单词
que.push(start);//第一层入队列
int q1=1;//当前层次要遍历的单词的个数,初始值为第一层,只有1个单词start
int q2=0;//下一层要遍历的单词的个数
while(q1 > 0)
{
string s = que.front();
que.pop();
--q1;//当前层次单词少一个,q1减一次1
//for循环是在dict中找到当前单词s所能到达的单词(即和s只差一个字母的单词),并入队列
for(int i=0; i<s.size(); i++)
{
string temp = s;
for(char c='a'; c<='z'; c++)
{
//如果当前字符和c相等,则结束下面操作,重新循环
if(temp[i] == c)
continue;
temp[i] = c;//用字符c代替temp的第i个字母,然后再判断替换后的temp是否在dict中
//如果找到的单词和end相等,则结束遍历(因为求最短长度)
if(temp == end)
{
return min_value+1;
}
//替换一个字母后的单词如果在dict中,但是不在unique中,则入队列
if(dict.find(temp)!=dict.end() && unique.find(temp)==dict.end())
{
//把找到的单词temp放入unique中,再入队列,再把下一层要遍历的单词个数+1
unique.insert(temp);
que.push(temp);
++q2;
}
}
}
//如果当前层次的单词遍历完,min_value+1,然后把q2赋给q1,开始遍历下一层
if(q1==0)
{
q1 = q2;
q2 = 0;
++min_value;
}
}
return 0;
}
};
代码2:
//法二:不用上面的方法判重,直接在dict中删除找到的单词
class Solution {
public:
int ladderLength(string start, string end, unordered_set<string> &dict)
{
if(start.size()!=end.size())
return 0;
if(start == end)
return 2;
int min_value = 1;//存储结果长度,初始值有start,所以为1
dict.erase(start);//如果dict中存在start则先删除
queue<string> que;//队列用于按层次保存单词
que.push(start);//第一层入队列
int q1=1;//当前层次要遍历的单词的个数,初始值为第一层,只有1个单词start
int q2=0;//下一层要遍历的单词的个数
while(q1 > 0 && !dict.empty())
{
string s = que.front();
que.pop();
--q1;//当前层次单词少一个,q1减一次1
//for循环是在dict中找到当前单词s所能到达的单词(即和s只差一个字母的单词),并入队列
for(int i=0; i<s.size(); i++)
{
string temp = s;
for(char c='a'; c<='z'; c++)
{
//如果当前字符和c相等,则结束下面操作,重新循环
if(temp[i] == c)
continue;
temp[i] = c;//用字符c代替temp的第i个字母,然后再判断替换后的temp是否在dict中
//如果找到的单词和end相等,则结束遍历(因为求最短长度)
if(temp == end)
{
return min_value+1;
}
//替换一个字母后的单词如果在dict中,但是不在unique中,则入队列
if(dict.find(temp)!=dict.end())
{
dict.erase(temp);//删除找到的temp
que.push(temp);
++q2;
}
}
}
//如果当前层次的单词遍历完,min_value+1,然后把q2赋给q1,开始遍历下一层
if(q1==0)
{
q1 = q2;
q2 = 0;
++min_value;
}
}
return 0;
}
};