【LeetCode】300. Longest Increasing Subsequence

题目描述

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(nlogn) time complexity?

解题思路

最长递增子序列。
要实现 O(nlogn) 的时间复杂度,需要借助一个辅助数组来实现。
我们使用一个数组,来记录长度为i的最小值,遍历原数组中的每一个元素,在辅助数组中查找第一个比它大的值,替换,如果找不到,则将辅助数组加1并记录为当前的元素。显然这个数组是递增的,每次可以用二分查找来找到合适的位置。

AC代码

class Solution {
public:
    int binarySearch(const vector<int>& minNums, int target) {
        int right = minNums.size(); if (!right) return 0;
        int left = 0;
        while (left < right) {
            int mid = (left + right) / 2;
            if (minNums[mid] == target) return mid;
            if (minNums[mid] > target) right = mid;
            else left = mid + 1;
        }
        return left;
    }

    int lengthOfLIS(vector<int>& nums) {
        vector<int> minNums;
        for (int i = 0; i < nums.size(); ++i) {
            int cur = binarySearch(minNums, nums[i]);
            if (cur >= minNums.size())
                minNums.push_back(nums[i]);
            else 
                minNums[cur] = nums[i];
        }
        return minNums.size();
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值