题目描述
Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given [10, 9, 2, 5, 3, 7, 101, 18]
,
The longest increasing subsequence is [2, 3, 7, 101]
, therefore the length is 4
. Note that there may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(nlogn) time complexity?
解题思路
最长递增子序列。
要实现
O(nlogn)
的时间复杂度,需要借助一个辅助数组来实现。
我们使用一个数组,来记录长度为i的最小值,遍历原数组中的每一个元素,在辅助数组中查找第一个比它大的值,替换,如果找不到,则将辅助数组加1并记录为当前的元素。显然这个数组是递增的,每次可以用二分查找来找到合适的位置。
AC代码
class Solution {
public:
int binarySearch(const vector<int>& minNums, int target) {
int right = minNums.size(); if (!right) return 0;
int left = 0;
while (left < right) {
int mid = (left + right) / 2;
if (minNums[mid] == target) return mid;
if (minNums[mid] > target) right = mid;
else left = mid + 1;
}
return left;
}
int lengthOfLIS(vector<int>& nums) {
vector<int> minNums;
for (int i = 0; i < nums.size(); ++i) {
int cur = binarySearch(minNums, nums[i]);
if (cur >= minNums.size())
minNums.push_back(nums[i]);
else
minNums[cur] = nums[i];
}
return minNums.size();
}
};