麻醉医生的深度学习之旅 P3:Pytorch实现天气识别

过去的一周,是断断续续的下雨天,心情也跟着破天气有些阴郁,学习效率有些低下。另外,在做MMDetection配置环境上也遇到了拦路虎,可我不是武松,被折磨得够呛,现在还没太整明白,还是得静下心来多花精力和时间继续沉淀!

这是我参加《365天深度学习训练营》的第三周,本期blog继续通过注释代码来强化理解与记忆。

实验目的:

  • 要求:本地读取并加载数据,测试集accuracy到达93%
  • 拔高:测试集accuracy到达95%,调用模型识别一张本地图片

实验环境:

  • 语言环境:python 3.8
  • 编译器:pycharm
  • 深度学习环境:
    • torch ==2.2.2
    • torchvision ==0.17.2
    • cpuonly
  • 数据:dd获取

实验流程:

一、前期准备

1. 导入"APP",设置 GPU
import torch # 导入 PyTorch 库,这是用于深度学习的主要库
import torch.nn as nn # 将 PyTorch 的神经网络模块导入,并简称为 nn,方便后续构建神经网络模型
import torchvision.transforms as transforms # 导入 torchvision 中的数据变换模块,主要是用于图形变换,例如裁剪、旋转等
import torchvision # pytorch的一个图形库,主要用来构建计算机视觉模型
from torchvision import transforms, datasets

# 导入操作系统相关的模块,用于与操作系统交互,比如文件路径操作等
# 导入 Python Imaging Library(PIL),用于图像处理相关操作
# 导入随机数模块,可能用于数据的随机操作等
import os,PIL,pathlib,random

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
🪧代码输出
device(type='cpu')
2. 加载数据
data_dir = './weather_photos/' # 定义了一个字符串,表示数据所在的目录路径为当前目录下的weather_photos文件夹
data_dir = pathlib.Path(data_dir) # 将字符串表示的路径转换为pathlib.Path对象,以便进行更方便的路径操作

data_paths = list(data_dir.glob('*')) # 使用glob('*')方法获取data_dir目录下的所有文件和子目录的路径,并将其转换为列表
classeNames = [str(path).split("\\")[1] for path in data_paths] # 通过 split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames中
classeNames # 打印classeNames列表,显示每个文件所属的类别名称
🪧代码输出
['cloudy', 'rain', 'shine', 'sunrise']
import matplotlib.pyplot as plt
from PIL import Image

# 指定图像文件夹路径
image_folder = './weather_photos/cloudy/'

# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]

# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))

# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')

# 显示图像
plt.tight_layout()
plt.show()

请添加图片描述

total_datadir = './weather_photos/'

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data
🪧代码输出
Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ./weather_photos/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
3. 划分数据集
train_size = int(0.8 * len(total_data)) # 计算训练集数据量,这里取总数据量的 80%(将总数据量乘以 0.8 并转换为整数)
test_size  = len(total_data) - train_size # 用总数据量减去训练集数据量,得到测试集数据量
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size]) # 使用 random_split 函数,将总的数据集 total_data 按照指定的大小(train_size 和 test_size)分割成训练集和测试集

train_dataset, test_dataset
train_size,test_size
🪧代码输出
(<torch.utils.data.dataset.Subset at 0x1f58820dac0>,
 <torch.utils.data.dataset.Subset at 0x1f58820d4c0>)
 (900, 225)
batch_size = 32

# dataset(必需参数):这是你的数据集对象
# batch_size(可选参数):指定每个小批次中包含的样本数
# shuffle(可选参数):若设为 True,则在每个 epoch 开始时对数据进行洗牌,随机打乱样本的顺序
# num_workers(可选参数):用于数据加载的子进程数量
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)

二、构建简单的CNN网络

一般的CNN网络是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool1 = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.pool2 = nn.MaxPool2d(2,2)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool1(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool2(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model
🪧代码输出
Using cpu device
etwork_bn(
  (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

三、训练模型

1. 设置超参数

损失函数(nn.CrossEntropyLoss()),学习率(1e-2),优化器(torch.optim.SGD)

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)
2. 编写训练函数

使用反向传播计算梯度,再通过优化器更新

# 训练循环
# 定义训练函数,接收数据加载器、模型、损失函数和优化器作为参数
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,187560000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
        
    # 求平均训练准确率和训练损失,并返回这两个值        
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
3. 编写测试函数

测试函数和训练函数大致相同,但不需要优化器与梯度传播

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,31310000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss
4. 正式训练
epochs     = 20
# 分别初始化用于存储训练过程中每一轮训练集的损失值、准确率,以及测试集的损失值、准确率的空列表
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
   model.train() # 将模型设置为训练模式
   epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
   
   model.eval()  # 将模型切换到评估模式
   epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
   
   train_acc.append(epoch_train_acc)
   train_loss.append(epoch_train_loss)
   test_acc.append(epoch_test_acc)
   test_loss.append(epoch_test_loss)
   
   # 定义了一个输出模板
   # 根据模板格式化并打印出每一轮的相关信息
   template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
   print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

经过20轮训练,得到结果如下:

🪧代码输出
Epoch: 1, Train_acc:63.4%, Train_loss:0.955, Test_acc:68.0%,Test_loss:0.821
Epoch: 2, Train_acc:78.6%, Train_loss:0.681, Test_acc:85.8%,Test_loss:0.591
Epoch: 3, Train_acc:83.8%, Train_loss:0.588, Test_acc:81.8%,Test_loss:0.502
Epoch: 4, Train_acc:86.4%, Train_loss:0.525, Test_acc:88.9%,Test_loss:0.431
Epoch: 5, Train_acc:86.4%, Train_loss:0.483, Test_acc:83.1%,Test_loss:0.432
Epoch: 6, Train_acc:87.0%, Train_loss:0.429, Test_acc:91.6%,Test_loss:0.297
Epoch: 7, Train_acc:90.6%, Train_loss:0.364, Test_acc:91.1%,Test_loss:0.301
Epoch: 8, Train_acc:89.7%, Train_loss:0.367, Test_acc:92.4%,Test_loss:0.295
Epoch: 9, Train_acc:90.7%, Train_loss:0.335, Test_acc:90.7%,Test_loss:0.250
Epoch:10, Train_acc:91.8%, Train_loss:0.333, Test_acc:92.4%,Test_loss:0.247
Epoch:11, Train_acc:91.8%, Train_loss:0.288, Test_acc:92.4%,Test_loss:0.280
Epoch:12, Train_acc:92.3%, Train_loss:0.283, Test_acc:93.8%,Test_loss:0.306
Epoch:13, Train_acc:93.3%, Train_loss:0.272, Test_acc:94.2%,Test_loss:0.211
Epoch:14, Train_acc:92.9%, Train_loss:0.281, Test_acc:93.3%,Test_loss:0.228
Epoch:15, Train_acc:93.1%, Train_loss:0.261, Test_acc:93.3%,Test_loss:0.242
Epoch:16, Train_acc:92.8%, Train_loss:0.312, Test_acc:93.3%,Test_loss:0.294
Epoch:17, Train_acc:93.1%, Train_loss:0.240, Test_acc:95.1%,Test_loss:0.193
Epoch:18, Train_acc:93.4%, Train_loss:0.234, Test_acc:94.2%,Test_loss:0.201
Epoch:19, Train_acc:93.7%, Train_loss:0.271, Test_acc:89.8%,Test_loss:0.238
Epoch:20, Train_acc:92.0%, Train_loss:0.238, Test_acc:92.0%,Test_loss:0.223
Done

四、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

请添加图片描述
分析结果:

  • 随着训练轮数(Epoch)的增加,训练准确率(Train_acc)和测试准确率(Test_acc)总体上呈现上升趋势,训练损失(Train_loss)和测试损失(Test_loss)总体上呈现下降趋势
  • 在前期,训练准确率和测试准确率提升较为明显,训练损失和测试损失下降较快
  • 中间阶段出现了一些波动,比如 Epoch:3 时测试准确率下降,Epoch:5 时测试准确率也有所下降
  • 后期逐渐稳定,在 Epoch:17 时测试准确率达到了 95.1%

要使测试集准确率达到 95%,可以考虑以下一些方式:

  • 调参:比如调整学习率、优化器的参数等,以找到最适合模型训练的参数组合
  • 增加训练数据:更多的数据可以帮助模型学习到更全面的特征
  • 数据增强:通过对现有数据进行随机变换等操作来扩充数据
  • 调整模型结构:根据数据特点和任务需求,适当调整模型的层数、节点数等结构
  • 尝试不同的模型:有时候不同的模型可能对特定任务表现更好
  • 训练策略调整:例如采用早停法、正则化等技术来避免过拟合

五、总结

  • 通过本次实验熟悉了从本地加载并分割数据集的方法,同时进一步掌握了CNN的搭建和使用
  • 拔高部分的要求还在摸索中,后面继续学习如何调用模型识别本地图片
  • 数据、模型是基本固定的,所以在尝试通过调参、增加训练轮数等提高测试集accuracy
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值