麻醉医生的深度学习之旅 P2:CIFAR10彩色图片识别

刚刚过去的周末举行了 X9 高校赛艇联赛,我倍感幸运,在大叔的年纪竟被教练选入了混八队伍。虽说结果不太理想,甚至为此略感失落,不过也收获了宝贵的比赛经验。接触赛艇一个多月以来,我深感这是一项既能减肥又颇为优雅的运动,它同时还是团队、技巧与力量的完美结合,散发着浓厚的艺术魅力。两站比赛已经成为过去时,下个月还有第三站在等着我们。依旧用朋友圈的那条动态来激励自己,“Go big or go home!!!”。未来一个月会很苦,需要兼顾训练与学习,但我坚信这段经历会给我打下深刻的烙印!

言归正传,这是我参加《365天深度学习训练营》的第二周,与此同时,最近我还在学习MMDetection做实例分割,跑通Demo之后,加上这回P2的顺利实施,我已经开始逐步建立起信心。本期blog我主要通过注释每段代码来强化理解与记忆,那么接下来,就请随我一同回顾此次旅程吧!

此次实验为机器学习经典案例:基于CIFAR10数据集的彩色图片识别实验

实验目的:

  • 学习如何编写一个完整的深度学习程序
  • 学会推导卷积层与池化层的计算过程
  • 重点是学会基于torch.nn构建CNN网络

实验环境:

  • 语言环境:python 3.8
  • 编译器:pycharm
  • 深度学习环境:
    • torch ==2.2.2
    • torchvision ==0.17.2
    • cpuonly

实验流程:

一、前期准备

1. 导入"APP",设置 GPU
# 导入PyTorch库,这是一个广泛用于深度学习的框架
# 将PyTorch的神经网络模块导入,并简称为nn(neural network),方便后续使用其中的各种神经网络层等
# 导入matplotlib的绘图模块,用于数据可视化,比如绘制图形等
# torchvision通常用于导入与计算机视觉相关的功能和数据集

import torch 
import torch.nn as nn 
import matplotlib.pyplot as plt 
import torchvision 

# 设置硬件设备,如果有GPU则使用,没有则使用cpu 
# 如果有则将device设置为"cuda",表示将在GPU上进行计算,这样可以加速深度学习模型的训练和推理等操作

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
device
🪧代码输出
device(type='cpu')
2. 加载数据
  • 通过torchvision中的dataset下载CIFAR10数据集,并划分好训练集与测试集
# torchvision.datasets.CIFAR10:调用PyTorch中用于加载 CIFAR10 数据集的类
# 'data':指定数据集存储的路径
# train=True:训练集
# transform=torchvision.transforms.ToTensor():将数据类型转换为张量(Tensor)格式
# download=True:如果数据集在指定路径下不存在,则自动下载该数据集

train_ds = torchvision.datasets.CIFAR10('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), 
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), 
                                      download=True)
🪧代码输出
Files already downloaded and verified
Files already downloaded and verified
  • 通过DataLoader加载数据,并设置好基本的batch_size
# batch_size:定义每一批数据的大小
# torch.utils.data.DataLoader:创建一个数据加载器
# train_ds:训练数据集
# batch_size=batch_size:使用前面定义的批量大小
# shuffle=True:在每个训练周期开始前对训练数据进行随机打乱,有助于提高训练效果,避免模型学习到数据的特定顺序
# 测试集通常不需要打乱数据顺序
# 这样就创建好了训练集和测试集的数据加载器,以便在训练和评估模型时能够以指定的批量大小方便地获取数据

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度

imgs, labels = next(iter(train_dl))
imgs.shape
🪧代码输出
torch.Size([32, 3, 32, 32])
3. 数据可视化
# 导入numpy库,用于数组操作等
# 创建一个新的图形,指定图形的大小为宽20、高5(英寸)
# 遍历一个名为imgs的数据集中的前20个图像

import numpy as np
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):

    # 维度缩减:将图像数据转换为numpy数组,并进行维度变换,通常是将通道维度调整到最后
    # 将整个图形区域划分成210列的子图布局,并选择当前要绘制的是第i+1个子图
    # 在当前子图中显示转换后的图像,使用指定的颜色映射(这里是二值颜色映射)
    # 关闭坐标轴的显示
    
    npimg = imgs.numpy().transpose((1, 2, 0))
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
    
#plt.show()  如果使用的是Pycharm编译器,加上这行代码

在这里插入图片描述

二、构建简单的CNN网络

CNN(Convolutional Neural Network,卷积神经网络)是一种深度神经网络模型,可以把CNN网络想象成一个特别厉害的“图像侦探”。它具有以下特点和优势:

  • 局部感知:通过卷积操作能够提取局部特征。看一张大图片的时候,不是一下子看整张图,而是一小块一小块地去看,这样它就能更细致地发现每个小部分的特点。
  • 权值共享:减少了参数数量,降低了模型复杂度。就像是它有一套通用的规则,不管看图片的哪个部分,都可以用这套规则来分析,不用为每个小地方都单独设定规则,大大减少了麻烦。
  • 多层结构:可以包含多个卷积层和池化层,逐步提取更高级的特征。这些层就像是一个个关卡,前面的卷积层和池化层负责把图片的各种特征一点一点地提取出来,从简单的特征到越来越复杂的特征。经过这么多层的处理后,它就能越来越清楚地知道这个图片到底是什么。

CNN 在图像识别、图像分类、目标检测等计算机视觉任务中取得了巨大的成功。例如,在识别图像中的物体、场景分类等方面表现出色。它能够自动从大量的数据中学习到有效的特征表示,从而提高对各种图像相关任务的处理能力。一些知名的 CNN 模型包括 AlexNet、VGGNet、ResNet 等。

比如说,我们让它去识别猫的图片。它通过这些操作就能从图片里找出那些能代表猫的特征,比如猫的耳朵形状、眼睛样子、身体轮廓等等。这样,它就能准确地说这张图片是不是猫啦。
在这里插入图片描述
一般的CNN网络是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

# 导入PyTorch的函数模块并简称为F
# 定义了要分类的类别数
# 定义了一个名为Model的类,继承自nn.Module

import torch.nn.functional as F

num_classes = 10 

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络:定义了一系列卷积层和池化层用于特征提取
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(kernel_size=2) 
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool3 = nn.MaxPool2d(kernel_size=2) 
                                      
        # 分类网络:全连接层用于最终的分类
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)
        
     # 定义了前向传播的过程:次经过卷积、激活函数(ReLU)和池化操作进行特征提取
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
     # 将特征图展平为一维向量
        x = torch.flatten(x, start_dim=1)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

加载模型并打印

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)
🪧代码输出
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            1,792
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            36,928
├─MaxPool2d: 1-4                         --
├─Conv2d: 1-5                            73,856
├─MaxPool2d: 1-6                         --
├─Linear: 1-7                            131,328
├─Linear: 1-8                            2,570
=================================================================
Total params: 246,474
Trainable params: 246,474
Non-trainable params: 0
=================================================================

三、训练模型

1. 设置超参数

损失函数(nn.CrossEntropyLoss())
可以把它想象成一个“裁判”,它的任务就是来评判模型预测得对不对。比如我们是要给图片分类,模型给出了它的预测结果,这个损失函数就去比较模型的预测和实际的正确答案之间差了多少。如果差得很多,那损失就大;如果比较接近,损失就小。模型在训练过程中就是要努力让这个损失变得越来越小,这样就说明它预测得越来越准。

学习率(1e-2)
学习率就像是模型走步的“大小”。如果学习率是 0.01(1e-2),那就表示模型每次根据计算出来的信息去调整自己参数的时候,迈的步子大小是 0.01。学习率如果太大了,模型可能会一下子迈得太远,容易走过头或者不稳定;学习率太小呢,模型就会走得慢悠悠的,可能要花很多时间才能走到比较好的地方。

优化器(torch.optim.SGD)
这个就像是模型调整自己的“引导员”。它知道怎么根据损失函数告诉它的信息(也就是模型哪里做得不好),还有学习率这个步子大小,来指挥模型去调整那些参数,比如调整一些权重之类的,让模型变得越来越好,越来越能准确地完成任务。

loss_fn    = nn.CrossEntropyLoss() 
learn_rate = 1e-2 
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)
2. 编写训练函数

使用反向传播计算梯度,再通过优化器更新

# 定义了一个训练函数,接收数据加载器、模型、损失函数和优化器作为参数
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,187560000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
        
    # 求平均训练准确率和训练损失,并返回这两个值        
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
3. 编写测试函数

测试函数和训练函数大致相同,但不需要优化器与梯度传播

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,31310000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0             # 初始化训练损失值和准确率为 0。
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss
4. 正式训练
# 定义训练的轮数
# 分别初始化用于存储训练过程中每一轮训练集的损失值、准确率,以及测试集的损失值、准确率的空列表
epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
   model.train()  # 将模型设置为训练模式
   epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
   
   model.eval()  # 将模型切换到评估模式
   epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
   
   train_acc.append(epoch_train_acc)
   train_loss.append(epoch_train_loss)
   test_acc.append(epoch_test_acc)
   test_loss.append(epoch_test_loss)
   
   # 定义了一个输出模板
   # 根据模板格式化并打印出每一轮的相关信息
   template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
   print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

经过10轮训练,得到结果如下:

🪧代码输出
Epoch: 1, Train_acc:15.4%, Train_loss:2.272, Test_acc:22.0%,Test_loss:2.097
Epoch: 2, Train_acc:25.9%, Train_loss:1.993, Test_acc:31.1%,Test_loss:1.871
Epoch: 3, Train_acc:35.0%, Train_loss:1.775, Test_acc:40.4%,Test_loss:1.638
Epoch: 4, Train_acc:41.3%, Train_loss:1.612, Test_acc:42.6%,Test_loss:1.589
Epoch: 5, Train_acc:44.8%, Train_loss:1.512, Test_acc:46.4%,Test_loss:1.452
Epoch: 6, Train_acc:48.3%, Train_loss:1.426, Test_acc:48.7%,Test_loss:1.416
Epoch: 7, Train_acc:51.3%, Train_loss:1.347, Test_acc:52.7%,Test_loss:1.311
Epoch: 8, Train_acc:54.2%, Train_loss:1.281, Test_acc:54.9%,Test_loss:1.265
Epoch: 9, Train_acc:56.9%, Train_loss:1.220, Test_acc:54.8%,Test_loss:1.257
Epoch:10, Train_acc:59.0%, Train_loss:1.164, Test_acc:59.0%,Test_loss:1.171
Done

四、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

请添加图片描述

由数据结合图表可以看到模型训练过程中每一轮的统计信息:

  • Epoch 表示轮数
  • Train_acc 是训练集上的准确率,从第一轮的 15.4%逐步提升到最后一轮的 59.0%,整体呈上升趋势,说明模型在训练集上的学习效果在不断改善
  • Train_loss 是训练集上的损失值,从 2.272 逐渐下降到 1.164,表明模型在训练过程中对训练数据的拟合越来越好
  • Test_acc 是测试集上的准确率,在前几轮有较大提升,后面虽有波动但总体也有所上升
  • Test_loss 是测试集上的损失值,整体也呈现下降趋势,但存在一定波动

总体来说,从这些信息可以观察到模型在训练过程中的大致性能变化,训练集上的准确率和损失值表现出模型在不断学习和改进,而测试集上的结果则反映了模型的泛化能力。不过,仅根据这些信息还不能全面准确地评估模型的性能,可能还需要结合其他指标和更深入的分析。

五、总结

  • 通过本期实验,再次复习并强化了深度学习的模型训练套路,为日后自主编写完整的深度学习程序打下基础
  1. 数据收集:收集用于训练和测试模型的数据集
  2. 数据预处理:清洗数据,进行归一化、标准化,以及数据增强等操作
  3. 定义模型架构:根据问题的性质设计神经网络的结构,选择合适的层和激活函数
  4. 编译模型:配置模型的损失函数、优化器和评估指标
  5. 训练模型:使用训练数据对模型进行训练,调整模型参数
  6. 评估模型:使用验证集或测试集评估模型的性能
  7. 模型调优:根据评估结果对模型进行调整,包括调整网络结构、超参数等,“调参大法好”
  8. 应用模型:将训练好的模型应用于实际问题,进行预测或分类
  • 推导卷积层与池化层的计算过程

卷积层的目的是提取图像的特征。它通过使用卷积核(或滤波器)在输入图像上滑动来实现这一点。

  1. 输入:

    • 输入图像 ( I ),大小为 ( H \times W \times C )(高度 x 宽度 x 通道数)
    • 卷积核 ( K ),大小为 ( F \times F \times C )(卷积核的尺寸 x 通道数)
  2. 参数:

    • 步长(Stride): ( S )
    • 填充(Padding): ( P )
  3. 输出:

    • 特征图 ( O ),大小为 ( O_H \times O_W \times N )(输出高度 x 输出宽度 x 卷积核数量)
  4. 计算过程:

    • 计算输出特征图的大小:
      [ O_H = \frac{H + 2P - F}{S} + 1 ]
      [ O_W = \frac{W + 2P - F}{S} + 1 ]
      其中 ( H ) 和 ( W ) 是输入图像的高度和宽度。
    • 对于每个卷积核:
      • 初始化输出特征图 ( O ) 为零矩阵
      • 将卷积核在输入图像上滑动,步长为 ( S ),填充 ( P )
      • 对于每个位置,计算卷积核和输入图像的局部区域的点积
      • 将结果累加到输出特征图的对应位置
    • 对于所有卷积核,重复步骤2

池化层用于降低特征图的空间维度,从而减少参数数量和计算量,同时使特征检测更加鲁棒。

  1. 输入:

    • 特征图 ( I ),大小为 ( H \times W \times C )(高度 x 宽度 x 通道数)
  2. 参数:

    • 池化窗口大小 ( F )
    • 步长 ( S )
  3. 输出:

    • 池化后的特征图 ( P ),大小为 ( P_H \times P_W \times C )
  4. 计算过程:

    • 计算池化后特征图的大小:
      [ P_H = \frac{H - F}{S} + 1 ]
      [ P_W = \frac{W - F}{S} + 1 ]

    • 对于每个通道:

      • 初始化输出特征图 ( P ) 为零矩阵
      • 将池化窗口在输入特征图上滑动,步长为 ( S )
      • 对于每个位置,根据池化类型(最大池化或平均池化)计算池化窗口内的值:
        • 最大池化:选择窗口内的最大值
        • 平均池化:计算窗口内所有值的平均
    • 对于所有通道,重复步骤2

  • 12
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值