TensorFlow 源码编译安装
安装完成编译工具Bazel( Bazel 安装)之后对TensorFlow进行编译。
1. TensorFlow 依赖库:
sudo apt-get install python-pip python-dev
sudo apt install python-numpy swig python-dev python-wheel
2. 下载Tensorflow
可以从官方Github上把最新的源码clone下来(嫌克隆慢的也可以直接去官网下载点击打开链接):
git clone https://github.com/tensorflow/tensorflow
下载好后解压,进入tensorflow目录,输入:
./configure
配置安装信息注意以下几点:
- python的安装目录
- 除了CUDA以外,其他平台都选n
- CUDA和cuDNN的版本不要选错了
- GCC编译器选n
配置完成后会看到最后出现:Configuration finished
3. 通过pip安装
通过ls命令确认安装包名字,然后再通过pip安装,<version>和安装环境有关
bazel build --config=opt --config=cuda /tensorflow/tools/pip_package:build_pip_package
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
cd /tmp/tensorflow_pkg
ls
sudo pip install /temp/tensorflow_pkg/tensorflow-<version>-none-any.whl
4. PS. 下载编译好的TensorFlow进行安装
如果不想自己编译,或者编译时间太长,可以选择编译好的对应文件进行安装
下载地址 tensorflow_gpu-1.6.0-cp27-cp27mu-manylinux1_x86_64.whl
命令行下执行如下命令:
pip install tensorflow_gpu-1.6.0-cp27-cp27mu-manylinux1_x86_64.whl
5. 验证TensorFlow 是否安装成功
在终端进入python,输入以下代码:
import tensorflow as tf
hello = tf.constant('Hello Tensorflow')
sess = tf.Session()
print(sess.run(hello))
如下图所示,则表明Tensorflow安装成功。
查看tensorflow版本,在python环境中输入:
import tensorflow as tf
#(查看版本)
tf.__version__
#(查看路径)
tf.__path__
结果如下所示
6. 卸载方法
sudo pip uninstall tensorflow # for Python 2.7
sudo pip3 uninstall tensorflow # for Python 3.n
至此,完成TensorFlow安装。