看病不求医,基于HAI在JupyterLab中用U-Net实现病灶识别

从医生到AI

在肿瘤医院的阅片室里,王医生正聚精会神地盯着CT影像。她需要从数百张断层扫描图中,手工勾画出患者肺部的肿瘤区域。这项工作不仅耗时费力,更要求医生保持高度专注——一个细微的漏判就可能影响治疗方案的选择。这样的场景每天都在全球各大医院上演,直到AI技术的出现带来转机。

医学图像分割技术通过深度学习算法,可以自动识别影像中的特定解剖结构或病变区域。其中,U-Net模型因其在生物医学图像分割中的卓越表现,已成为该领域的标准工具。让我们通过一个完整的案例,了解如何在JupyterLab环境中构建并应用这个"AI医生助手"。

环境配置与数据准备

2.1 环境配置

在JupyterLab中新建Python笔记本,执行以下命令安装依赖库:

!pip install tensorflow keras numpy matplotlib opencv-python scikit-image

2.2 数据获取与预处理

我们使用公开的ISIC皮肤病变数据集进行演示。这个数据集包含皮肤镜图像及对应的病灶标注图:

下载地址如下:(PS: 真实数据服务器跑不动,所以用的模拟数据,有能力的同学可以测试下真实数据哦。)

https://isic-challenge-data.s3.amazonaws.com/2016/ISBI2016_ISIC_Part2B_Training_Data.zip

https://challenge.isic-archive.com/data/

import numpy as np
import matplotlib.pyplot as plt
from skimage import io, transform
from sklearn.model_selection import train_test_split
import zipfile

# 下载示例数据集(实际使用时替换为真实数据)
!wget https://isic-challenge-data.s3.amazonaws.com/2016/ISBI2016_ISIC_Part2B_Training_Data.zip  

# 解压数据集
with zipfile.ZipFile('ISBI2016_ISIC_Part2B_Training_Data.zip', 'r') as zip_ref:
    zip_ref.extractall('dataset')

# def download_and_extract_dataset():
    # 下载数据集
    # dataset_url = "https://isic-challenge-data.s3.amazonaws.com/2016/ISBI2016_ISIC_Part2B_Training_Data.zip  "
    # os.system(f"wget {dataset_url}")
    
    # 解压数据集
    # with zipfile.ZipFile('ISBI2016_ISIC_Part2B_Training_Data.zip', 'r') as zip_ref:
    #     zip_ref.extractall('dataset')

# 下载并解压数据集
# download_and_extract_dataset()

# 加载数据
def load_dataset():
    images = []
    masks = []
    
    # 生成模拟数据(实际应加载真实数据)
    for i in range(200):
        img = np.random.rand(256, 256)  # 模拟灰度图像
        mask = np.zeros((256, 256))
        mask[50:150, 50:150] = 1  # 模拟方形病灶
        images.append(img)
        masks.append(mask)
    
    return np.array(images), np.array(masks)

X, y = load_dataset()

# 数据可视化示例
plt.figure(figsize=(10,4))
plt.subplot(1,2,1)
plt.imshow(X[0], cmap='gray')
plt.title('原始图像')
plt.subplot(1,2,2)
plt.imshow(y[0], cmap='gray')
plt.title('标注图像')
plt.show()

构建U-Net

3.1 模型架构解析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不惑_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值