从医生到AI
在肿瘤医院的阅片室里,王医生正聚精会神地盯着CT影像。她需要从数百张断层扫描图中,手工勾画出患者肺部的肿瘤区域。这项工作不仅耗时费力,更要求医生保持高度专注——一个细微的漏判就可能影响治疗方案的选择。这样的场景每天都在全球各大医院上演,直到AI技术的出现带来转机。
医学图像分割技术通过深度学习算法,可以自动识别影像中的特定解剖结构或病变区域。其中,U-Net模型因其在生物医学图像分割中的卓越表现,已成为该领域的标准工具。让我们通过一个完整的案例,了解如何在JupyterLab环境中构建并应用这个"AI医生助手"。
环境配置与数据准备
2.1 环境配置
在JupyterLab中新建Python笔记本,执行以下命令安装依赖库:
!pip install tensorflow keras numpy matplotlib opencv-python scikit-image
2.2 数据获取与预处理
我们使用公开的ISIC皮肤病变数据集进行演示。这个数据集包含皮肤镜图像及对应的病灶标注图:
下载地址如下:(PS: 真实数据服务器跑不动,所以用的模拟数据,有能力的同学可以测试下真实数据哦。)
https://isic-challenge-data.s3.amazonaws.com/2016/ISBI2016_ISIC_Part2B_Training_Data.zip
https://challenge.isic-archive.com/data/
import numpy as np
import matplotlib.pyplot as plt
from skimage import io, transform
from sklearn.model_selection import train_test_split
import zipfile
# 下载示例数据集(实际使用时替换为真实数据)
!wget https://isic-challenge-data.s3.amazonaws.com/2016/ISBI2016_ISIC_Part2B_Training_Data.zip
# 解压数据集
with zipfile.ZipFile('ISBI2016_ISIC_Part2B_Training_Data.zip', 'r') as zip_ref:
zip_ref.extractall('dataset')
# def download_and_extract_dataset():
# 下载数据集
# dataset_url = "https://isic-challenge-data.s3.amazonaws.com/2016/ISBI2016_ISIC_Part2B_Training_Data.zip "
# os.system(f"wget {dataset_url}")
# 解压数据集
# with zipfile.ZipFile('ISBI2016_ISIC_Part2B_Training_Data.zip', 'r') as zip_ref:
# zip_ref.extractall('dataset')
# 下载并解压数据集
# download_and_extract_dataset()
# 加载数据
def load_dataset():
images = []
masks = []
# 生成模拟数据(实际应加载真实数据)
for i in range(200):
img = np.random.rand(256, 256) # 模拟灰度图像
mask = np.zeros((256, 256))
mask[50:150, 50:150] = 1 # 模拟方形病灶
images.append(img)
masks.append(mask)
return np.array(images), np.array(masks)
X, y = load_dataset()
# 数据可视化示例
plt.figure(figsize=(10,4))
plt.subplot(1,2,1)
plt.imshow(X[0], cmap='gray')
plt.title('原始图像')
plt.subplot(1,2,2)
plt.imshow(y[0], cmap='gray')
plt.title('标注图像')
plt.show()