用slim定义Lenet网络,并训练测试
用slim定义Lenet网络,并训练测试MNIST;
用slim 定义mobilenet_v2网络,并训练测试MNIST
将LENET封装为class,并用此封装好的并用此封装好的lenet对minist进行分类
1. lenet 结构如附件描述。注意:
(1)lenet 输入为32x32,并用此封装好的而minist为28x28x28x28,并用此封装好的故需要先对数据进行填充。
(2)lenet 输出 10位的 one-hot形式的输出 logits, 故minist的标签读取需采用
one-hot的形式。
采用softmax 交叉熵作为损失函数。用softmax进行分类。
2. 在init函数中传入初始化变量所需的mu,并用此封装好的 sigma参数,并用此封装好的以及其他所需定
制化参数。3. 对lenet中常见的conv层,并用此封装好的fc层,并用此封装好的pooling层定义统一的定制化功能层
graph绘图函数. 为层次化组织网络,并用此封装好的给每个层定义一个不同的名字空间
4. 绘制整个网络计算图的函数,并用此封装好的_build_graph(). 这里要求调用_build_graph()
的过程放在 _init_函数里,并用此封装好的这样外部每调用并生成一个class的实例,并用此封装好的实际上
就自动绘制了一次lenet。
5. 在外部调用该模块并通过实例化实现对lene
用slim定义Lenet网络,并训练测试
要求:
1.将Lenet单独定义到Lenet.py文件
可以定义为一个函数,例如:
def lenet(images):
2.用with slim.arg_scope .....: 去管理 lenet中所有操作的
默认参数,例如activation_fn, weights_initializer,等。
3.编写mnist_train.py脚本,训练slim定义的lenet做MNIST字
符分类。
这里可以不要求用slim中的slim.learning.train,因为这个涉及
转换数据为TFRecord以及用队列读取等复杂操作去自动取数据。
设计变量共享网络进行MNIST分类
设计变量共享网络进行MNIST分类
连体网络MINIST识别
构建如下图所示识别模型:该模型由两个相同的网络G(x)组成。后续的两个路径的线性加权模块 两个网络共享相同的参数W。
该模型实现如下的功能,输入两个MINIST图片,判断是不是同一个数字。后续的两个路径的线性加权模块。例如,输入 负样本对:X1=6 的图片 , X2=9 的图片 输出:1
输入 正样本对:X1=3 的图片 , X2=3 的图片 输出:0
G(x)是一个一般的全连接网络(两边的网络结构是一样的!共享参数W、b等),由结构可以自己设计。后续的两个路径的线性加权模块 比
如建议两层网络:hidden1:784(28x28)->500; hidden2: 500->10,使用relu。后续的两个路径的线性加权模块 也可以尝试其他节点数组
合,和其他非线性变换函数。后续的两个路径的线性加权模块 。
强调:G(X)的功能定义为提取一张minist 图
像的特征。后续的两个路径的线性加权模块 。
注意:使用此loss 需要定 y=0 (两个数字相同)y=1 (两个数字不同)!!!!!!!!!!
要求:合理设计网络,及训练数据采样方法,提升网络的正负样本对的预测精度:用ACC 衡量。后
x86 intrinsics cheat sheet v1.0.pdf
X86 intrinsics check sheet
X86 intrinsics...
X86 intrinsics...
X86 intrinsics...
NVIDIA-Linux-x86_64-410.73
NVIDIA-Linux-x86_64-410.73NVIDIA-Linux-x86_64-410.73
64-ia-32-architectures-optimization-manual.pdf
X86 architecture
X86 architectureX86 architectureX86 architecture
X86 architecture
X86 architecture
X86 architecture
pagodatsung.tai.ppopp.2017.pdf
pagodatsung.tai.ppopp.2017.pdf
Design and Implementation of RISC I
Design and Implementation of RISC I
Design and Implementation of RISC I