深度学习训练

用slim定义Lenet网络,并训练测试MNIST

1.要求

1.将Lenet单独定义到Lenet.py文件
可以定义为一个函数,例如:
def lenet(images):
2.用with slim.arg_scope …: 去管理 lenet中所有操作的
默认参数,例如activation_fn, weights_initializer,等。
3.编写mnist_train.py脚本,训练slim定义的lenet做MNIST字
符分类。

2.网络定义

(1)网络定义

定义网络lenet.

def lenet(images):
with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(.0, .1),
weights_regularizer=slim.l2_regularizer(0.0005),
biases_initializer=tf.truncated_normal_initializer(.0, .1)):
net = slim.conv2d(images, 6, [5, 5], [1, 1], padding=‘VALID’, scope=‘conv1’)
net = slim.max_pool2d(net, [2, 2], [2, 2], padding=‘VALID’, scope=‘pool1’)
net = slim.conv2d(net, 16, [5, 5], [1, 1], padding=‘VALID’, scope=‘conv2’)
net = slim.max_pool2d(net, [2, 2], [2, 2], padding=‘VALID’, scope=‘pool2’)
net = slim.flatten(net, scope=‘flatten1’)
net = slim.stack(net, slim.fully_connected, [120, 84], scope=‘fc1’)
net = slim.fully_connected(net, 10, activation_fn=tf.nn.softmax, scope=‘fc2’)
return net

结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值