几个常用数学知识点

本文深入探讨了机器学习中至关重要的数学概念,包括泰勒公式、极值点、鞍点、拐点以及范数等,揭示了这些知识点在理解模型原理时的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  机器学习跟数学有着紧密的关系,因此掌握一些常用的数学知识点,有助于我们理解某些模型的底层相关原理。


1、泰勒公式

2、驻点、极值点、鞍点、拐点

2.1、驻点

  在数学,特别在微积分,函数在一点处的一阶导数为零,该点即函数的驻点(Stationary Point)或稳定点,也就是说,若 p p 为驻点则dydx|p=0

2.2、极值点

  在数学中,极大值与极小值(又被称为极值)是指在一个域上函数取得最大值(或最小值)的点的函数值。而使函数取得极值的点(的横坐标)被称作极值点。这个域既可以是一个邻域,又可以是整个函数域(这时极值称为最值)。
  值得注意的是:极值点不一定是驻点;驻点不一定是极值点。对于可微函数,极值点一定是驻点。

2.3、鞍点

  一个不是极值点的驻点称为鞍点(Saddle Point)。具体可见以下两幅图:


这里写图片描述


这里写图片描述

  思考一个拥有两个以上变数的函数。它的曲面在鞍点好像一个马鞍,在某些方向往上曲,在其他方向往下曲。在一幅等高线图里,一般来说,当两个等高线圈圈相交叉的地点,就是鞍点。例如,两座山中间的山口就是一个鞍点。

2.4、拐点

  拐点(Inflection Point)或反曲点是一条可微曲线改变凹凸性的点,或者等价地说,是使切线穿越曲线的点。


这里写图片描述

3、范数

4、点到超平面的距离

5、距离度量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值