霍夫丁不等式(Hoeffding's inequality)

1.简述

  在概率论中,霍夫丁不等式给出了随机变量的和与其期望值偏差的概率上限,该不等式被Wassily Hoeffding于1963年提出并证明。霍夫丁不等式是Azuma-Hoeffding不等式的特例,它比Sergei Bernstein于1923年证明的Bernstein不等式更具一般性。这几个不等式都是McDiarmid不等式的特例。

2.霍夫丁不等式

2.1.伯努利随机变量特例

  掷硬币,假设正面朝上概率为 p p ,反面朝上概率为1p,投掷 n n 次,则正面朝上次数的期望值为np。更进一步,有以下不等式:

P(H(n)k)=i=0k(ni)pi(1p)ni P ( H ( n ) ≤ k ) = ∑ i = 0 k ( n i ) p i ( 1 − p ) n − i

其中, H(n) H ( n ) n n 次投掷中,正面朝上的次数。
  对某一ε>0,有 k=(pε)n k = ( p − ε ) n ,上述不等式确定的霍夫丁上界将会按照指数级变化:
P(H(n)(pε)n)exp(2ε2n)(2.1.1) P ( H ( n ) ≤ ( p − ε ) n ) ≤ e x p ( − 2 ε 2 n ) ( 2.1.1 )

类似地,可以得到:
P(H(n)(p+ε)n)exp(2ε2n)(2.1.2) P ( H ( n ) ≥ ( p + ε ) n ) ≤ e x p ( − 2 ε 2 n ) ( 2.1.2 )

综合(2.1.1)(2.1.2),可得:
P((pε)nH(n)(p+ε)n)12exp(2ε2n)(2.1.3) P ( ( p − ε ) n ≤ H ( n ) ≤ ( p + ε ) n ) ≥ 1 − 2 e x p ( − 2 ε 2 n ) ( 2.1.3 )

ε=lnn/n ε = ln ⁡ n / n ,代入(2.1.3),有:
P(|H(n)pn|lnn/n)12exp(2lnn)=12/n2(2.1.4) P ( | H ( n ) − p n | ≤ ln ⁡ n / n ) ≥ 1 − 2 e x p ( − 2 ln ⁡ n ) = 1 − 2 / n 2 ( 2.1.4 )

(2.1.4)即为霍夫丁不等式的伯努利随机变量特例。

2.2.一般形式

  令 X1Xn X 1 , ⋯ , X n 为独立的随机变量,且 Xi[a,b] X i ∈ [ a , b ] i=1n i = 1 , ⋯ , n 。这些随机变量的经验均值可表示为:

X¯=X1++Xnn X ¯ = X 1 + ⋯ + X n n

  霍夫丁不等式叙述如下:
t>0P(X¯E[X¯]t)exp(2n2t2ni=1(biai)2)(2.2.1) ∀ t > 0 , P ( X ¯ − E [ X ¯ ] ≥ t ) ≤ e x p ( − 2 n 2 t 2 ∑ i = 1 n ( b i − a i ) 2 ) ( 2.2.1 )

X¯=X¯ X ¯ = − X ¯ ,代入上述不等式,可得:
t>0P(E[X¯]X¯t)exp(2n2t2ni=1(biai)2)(2.2.2) ∀ t > 0 , P ( E [ X ¯ ] − X ¯ ≥ t ) ≤ e x p ( − 2 n 2 t 2 ∑ i = 1 n ( b i − a i ) 2 ) ( 2.2.2 )

综合(2.2.1)(2.2.2),可得霍夫丁不等式的另一种形式:
t>0P(|X¯E[X¯]|t)2exp(2n2t2ni=1(biai)2)(2.2.3) ∀ t > 0 , P ( | X ¯ − E [ X ¯ ] | ≥ t ) ≤ 2 e x p ( − 2 n 2 t 2 ∑ i = 1 n ( b i − a i ) 2 ) ( 2.2.3 )

  若令 Sn=X1++Xn S n = X 1 + ⋯ + X n ,霍夫丁不等式可叙述为:
t>0P(SnE[Sn]t)exp(2t2ni=1(biai)2)(2.2.4) ∀ t > 0 , P ( S n − E [ S n ] ≥ t ) ≤ e x p ( − 2 t 2 ∑ i = 1 n ( b i − a i ) 2 ) ( 2.2.4 )

t>0P(E[Sn]Snt)exp(2t2ni=1(biai)2)(2.2.5) ∀ t > 0 , P ( E [ S n ] − S n ≥ t ) ≤ e x p ( − 2 t 2 ∑ i = 1 n ( b i − a i ) 2 ) ( 2.2.5 )

t>0P(|SnE[Sn]|t)2exp(2t2ni=1(biai)2)(2.2.6) ∀ t > 0 , P ( | S n − E [ S n ] | ≥ t ) ≤ 2 e x p ( − 2 t 2 ∑ i = 1 n ( b i − a i ) 2 ) ( 2.2.6 )

  从(2.2.1)推导(2.2.4),只需对不等式 X¯E[X¯]t X ¯ − E [ X ¯ ] ≥ t 左右两边同乘系数 n n ,再令t=nt即可。不难看出,当 Xi X i 为伯努利随机变量时,(2.2.6)即可转化为(2.1.4)。

  需要注意的是, Xi X i 若为无放回抽样时的随机变量,该等式依然成立,尽管此时这些随机变量已不再独立。相关证明可查看Hoeffding在1963年发表的论文。在无放回抽样时,若想要更好的概率边界,可查看Serfling在1974年发表的论文。


参考文献

[1] http://blog.csdn.net/z_x_1996/article/details/73564926
[2] https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
以上为本文的全部参考文献,对原作者表示感谢。

  • 4
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值