For finite sets A, B with |A|=m and |B|=n, there are 2mn relations from A to B, including the empty relation as well as the relation AXB itself…….
A X (B∩C) = (AXB) ∩ (AXC)
A X (B∪C) = (AXB) ∪ (AXC)
(A∩B) X C = (AXC) ∩ (BXC)
(A∪B) X C = (AXC) ∪ (BXC)
A relation R on a set A is called reflexive if for all x∈A, (x, x)∈R.
reflexive(对称的,不变的——就像空间)
栗如:R(x, y) 表示
任意一个整数 = 它自身
Relation R on set A is called symmetric if (x, y)∈R => (y, x)∈R, for all x, y∈A.
symmetric(
相互的,方向性——就像力的作用师相互的)
栗如:R(x, y) 表示
如果 那么
For a set A, a relation R on A is called transitive if, for all x, y, z∈A, (x, y), (y, z)∈R =>(x, z)∈R.(So if x is related to y, and y is related to z, we want x related to z, with y playing the role of intermediary).
Antisymmetry: If two objects are both related to each other, they are the same object.
栗如 并且 那么
偏序(Partial Orders)
Antisymmetry
Reflexive
Transitive
串?(Alphabetical Order)
栗如: 哈斯图(Hasse diagram): 当 时
图:哈斯图中元素的关系
图:哈斯图
全序关系:(total order): 当 时
图:全序关系
全序关系有最小值,最大值
证明如果 R 是 symmetric、transitive 的,那么 R 一定是 reflexive
symmetric:
transitive:
假设:
证明:
let
then and
and and
( and ) and ( and )
and
……
Functions
a special kind of relation called a function.
For nonempty sets A, B, a function, or mapping, f from A to B, denoted : f: A->B, is a relation from A to B in which every element of A appears exactly once as the first component of an ordered pair in the relation.
b is called the image of a under f, whereas a is a preimage of b.
A function f: A->B is called one-to-one, or injective, if each element of B appears at most once as the image of an element of A.
……By the rule of product, the number of one-to-one functions from A to B is n(n-1)(n-2)…(n-m+1)=P(n,m)=P(|B|, |A|).
If f: A->B and A1⊆A, then f(A1) = {b∈B | b=f(a), for some a∈A1}, and f(A1) is called the image of A1 under f.(表?table?)
Composite Functions:
图:复合函数
injective(one - to - one): If then 这不就是,DI 中的 I ,表示注入的单词,注入有单射的意思???
图:单射
证明 且 是单射:
假设:
当 为单射时 概率论上的独立?
……
Finite State Machines:有限状态机
It must have the ability to remember past information as it works on the information it is currently processing.
As the name indicates, a finite state machine has a finite number of internal states where the machine remembers certain information when it is in a particular state.
Language:Strings:字符串的数学定义
We use ∑ to denote a nonempty finite set of symbols, collectively called an alphabet.
If ∑ is an alphabet and n∈Z+, we define the powers of ∑ recursively as follows;(∑的幂)
∑1=∑; and
∑n+1={xy | x∈∑, y∈∑n}, where xy denotes the juxtaposition of x and y.
For an alphabet∑ we define ∑0={λ}, where λ denotes the empty string—that is, the string consisting of no symbols taken from ∑.
If w1,w2∈∑+, then we may write w1=x1x2……xm and w2=y1y2……yn, for m, n∈Z+, and x1x2……xm, y1y2……yn∈∑. We say that the strings w1 and w2 are equal, and we write w1=w2, if m=n, and xi=yi for all 1<= I <= m.
Let w= x1x2……xn∈∑+, where xi∈∑ for each 1<= I <= n. We define the length of w, which is denoted by ||w||, as the value n. For the case of λ, we have ||λ|| = 0.
Let x, y∈∑+ with x = x1x2……xm and y = y1y2……yn, so that each xi, for 1 <= I <= m, and each yj, for 1 <= j <= n, is in ∑. Then concatenation of x and y, which we write as xy, is the string x1x2……xmy1y2……yn.
For each x∈∑*, we define the powers of x by x0=λ, x1=x, x2=xx, x3=xx2,……, xn+1=xxn,……, where n∈N.
If x,y∈∑* and w=xy, then the string x is called a prefix of w, and y≠λ, then x is said to be a proper prefix. Similarly, the string y is called a suffix of w; it is a proper suffix when x≠λ.
If x,y,z∈∑* and w = xyz, then y is called a substring of w. When at least one of x and z is different from λ( so that y is different from w), we call y a proper substring. For a given alphabet ∑, any subset of ∑* is called a language over ∑. This includes the subset {}, which we call the empty language.
For an alphabet ∑ and languages A, B ⊆∑*, the concatenation of A and B, denoted AB, is {ab | a∈A, b∈B}.(级联)
For a given language A⊆∑* we can construct other languages as follows: (略,反正没看懂).
Finit State Machine:有限状态机-干货有翻译哦
Mary Jo gose to the vending machine, inserts two nickels and a dime, in that order, and presses the white button, denoted W. Out comes her package of peppermint-flavored chewing gum.
What Mary Jo has done, in making her purchase, can be represented as shown in Table 6.1, where t0 is the initial time, when she inserts her first nickel, and t1,t2,t3,t4 are later moments in time, with t1 < t2 < t3 < t4.
t0
t1
t2
t3
t4
State
s0
(4) s1(5$)
(7) s2(10$)
(10) s3(20$)
(13) s0
Input
5$
(5) 5$
(8) 10$
(11) W
Output
Nothing
(6) Nothing
(9) Nothing
(12) P
For each input at time ti, 0 <= I <= 3, there is at that time a corresponding output and then a change in state. The new state at time ti+1 depends on both the input and the (present) state at time ti
翻译:Mary Jo找到自动售货机,按顺序放入两个5分硬币和一角硬币,然后按下白色按钮,表示为W.自动售货机吐出,她的一包薄荷味口香糖。Mary Jo在购买时所做的,如下表中所示,t0是初始时间,当她插入第一个硬币时,t1,t2,t3,t4是后来的时刻,t1 < t2 < t3 < t4。
The major features of such a machine are as follows:
The machine can be in only one of finitely many states at a given time. These states are called the internal states of the machine, and at a given time the total memory available to the machine is the knowledge of which internal state it is in at that moment.
The machine will accept as input only a finite number of symbols, which collectively are referred to as the input alphabet φ . In the vending machine example, the input alphabet is {nickel, dime, quarter, W, B}, each item of which is recognized by each internal state.
An output and a next state are determined by each combination of inputs and internal states. The finite set of all possible outputs constitutes the output alphabet Ο/omikro:n/ for the machine.
We assume that the sequential processings of the machine are synchronized by separate and distinct clock pulses and that the machine operates in a deterministic manner, where the output is completely determined by the total input provided and the starting state of the machine.
A finite state machine is a five-tuple M=(S, φ, Ο, v, w), where S = the set of internal states for M; φ = the input alphabet for M; Ο = the output alphabet for M; v: S X φ -> S is the next state function; and w : S X φ –> Ο is the output function.
翻译:有限状态机是一个五元组的机器 M=(S,φ,Ο,v,w),其中S 表示M的内部状态集; φ 表示M的输入字符集 ;Ο 表示 M的输出字符集; v 表示S X φ -> S是下一个状态函数,状态变迁函数,接受上一个状态S和本次输入φ 作为参数;w 表示S X φ –> Ο,是输出函数,接受上一个状态S和本次输入φ 作为参数。
The state table or transition table for the given machine:
v
w
0
1
0
1
s0
s0
s1
0
0
s1
s2
s1
0
0
s2
s0
s1
0
1
To calculate v(s1, 1) for example, we find s1 in the column of present states and proceed horizontally over form s1 until we are below the entry 1 in the section of the table for v. This entry give v(s1, 1) = s1. In the same way we find w(s1, 1) = 0.
In such a diagram each internal state s is represented by a circle with s inside of it. For states si and sj, if v(si, x) = sj for x∈φ, and w(si, x) = y for y∈Ο, we represent this in the state diagram by drawing a directed edge (or arc) from the circle for si to the circle for sj and labeling the arc with the input x and output y as shown if Fig.
We seek a process for transforming a given machine into one that has no redundant internal states. This process is known as the minimization process, and its development relies on the comcepts of equivalence relation and partition.