# 集合

## 子集关系

### 句式

For each element a in set A， we have a belongs to B. So A is the subset of B.
（以下我都尽量用符号吧，毕竟符号更直观点）


## 两个集合相等

### 句式

For each element a in set A, we have a∈B, i.e A ⊆ B.
For each element a in set B, we have a∈A, i.e B ⊆ A.
To sum up, A=B holds obviously.


### 例子

A,B,C是非空有限集，证明A-（B∪C）=（A-B）∩（A-C）

Proof:
∀ x∈A-（B∪C）, we have x∈A and x∉B∪C，which indicates x∉B and x∉C. So x∈A-B and x∈A-C hold obviously, i.e x∈（A-B）∩（A-C）holds. Now we can say A-（B∪C）⊆（A-B）∩（A-C）
∀ x∈（A-B）∩（A-C）, we have x∈（A-B）and x∈（A-C），which indicates x∈A, x∉B and x∉C, i.e x∈A-（B∪C）holds. Now we can say （A-B）∩（A-C）⊆A-（B∪C）.
To sum up, A-（B∪C）=（A-B）∩（A-C）.
——————————————————————

Suppose that z∈C exists in (S○R)(D), there is a element x∈D that makes x(S○R)z holds.
By the definition of composite, there must be y∈D, so we have xRy and ySz hold, which implies y∈R(x) and z∈S(y) so that z∈S(R(x)).
Since x∈D and z∈(S○R)(D) hold, we have z∈S(R(D)), i.e (S○R)(D) ⊆ S(R(D)) holds.

∀ z∈S(R(D)) there must be a y∈B that makes z∈S(y) hold. There must exists x∈D making xRy holds, i.e y∈R(x) and z∈S(y) hold obviously, which makes z∈(S○R)(x) hold.
Since x∈D hold, now we can say that z∈(S○R)(D), i.e S(R(D)) ⊆ (S○R)(D) holds.
To sum up, (S○R)(D) = S(R(D)).
——————————————————————

（上划线我实在找不到表示方法，就用斜杠表示吧，遇到双重的，我内层就以补集符号∁代替了，意为取反；⊕是异或运算

Proof：
A⊗B=（A⊕B） 题目条件
=（∁A∩B ∪ A∩∁B） 根据⊕定义
=(∁A∩B)(A∩∁B) 德·摩根定律
=(∁AB) ∩ (A∁B) 德·摩根定律
=(A∪B)∩(A∪B) 化简得

## 划分（partition）

1、A中每个元素属于划分中的某个集合
2、如果A₁、A₂是A中的不同元素，那么A₁∩A₂=Ø

### 句式

Supposing ∀ a∈A，∃b∈B,
……（题目条件）
a∈b holds.
Suppose that A₁、A₂∈B and A₁≠A₂
……（题目条件）
A₁∩A₂ = Ø holds.
To sum up, B is the partition of A.


### 例子

Proof:
We define S as a set that made of {Ai∩B, Ai∩B≠Ø and i∈I}
Supposing ∀ a∈A∩B, there exists a set b∈S that contains the element a since b = {Ai∩B} and s=A∩B={Ai∩B,i∈I}, i.e a∈b holds.
Suppose that s₁、s₂∈B, which are made of different Ai∩B. By the definition of partition, Ai≠Aj holds, if i≠j, i.e s₁∩s₂=Ø.
To sum up, S that is made of {Ai∩B, Ai∩B≠Ø and i∈I} is the partition of A∩B.

# 关系

## 关系R的自反性（reflexive）反自反（irreflexive）

### 句式

For each element a∈A, ……（这里是题目给的条件，比如A×A什么的）,
1  we have (a,a) ∈ R, i.e R is reflexive.
2  we have (a,a) ∉ R, i.e R is irreflexive


## 关系R的对称性（symmetric）反对称（antisymmetric）

### 句式

For each a,b are the elements in A, ……（题目条件）
1  we have (a,b) ∈R and (b,a) ∈R，i.e R is symmetric
2  we have (a,b) ∈R， (b,a) ∈R and a=b, i.e R is antisymmetric


### 例子

Proof：（数学归纳法，其应用往往在于前后条件成立有因果关系时，即k成立能推导k+1成立，此时应用数学归纳法）

1. By the condition, when n = 1, R is symmetric.
2. When n ＞ 1, supposing Rk is symmetric, ∀(a,b)∈Rk, there exists c∈A for (a,c)∈Rk and (c,b)∈R holding. Moreover, Rk and R is symmetric, which indicate (c,a)∈Rk and (b,c)∈R hold obviously. Since Rk+1 = RkR holds, (b,a) ∈Rk+1 holds obviously, which suggests Rk+1 is Symmetric.

To sum up, Rn is symmetric for ∀ n ≥ 1.

## 关系R的传递性（transitive）

（a,b）∈R ，（b,c）∈R

### 句式

For each (a,b) ∈R and (b,c) ∈R, ……（题目条件）
we have (a,c) ∈ R, i.e R is transitive


### 例子

Proof:
Supposing a,b∈A and (a,b)∈R, since R is reflexive, (a,a)∈R holds. By the condition, (a,a)∈R and (a,b)∈R so (b,a)∈R holds obviously, i.e R is symmetric.
Basing on the condition, ∀a,b,c∈R, if (a,b)∈R and (b,c)∈R, (c,a)∈R holds. Since R is Symmetric, (a,c)∈R holds, i.e R is transitive.

## 关系R的相容性（compatible）

R具有自反性，对称性，不必具备传递性（所以等价关系是特殊的相容关系）

### 句式

……
R is reflexive.
……
R is symmetric.
To sum up, R is compatible relation.


### 例子

Proof:
For ∀ a∈A, by the definition that {A₁,A₂,A₃,……An} is the covering of A, we konw taht a∈A₁∪A₂∪A₃∪……An, which indicates (a,a)∈A₁×A₁∪A₂×A₂∪A₃×A₃∪……An×An
Since R=A₁×A₁∪A₂×A₂∪A₃×A₃∪……An×An, i.e R is reflexive.
For ∀ a,b∈A, by the condition, we know that there exists Ai for a,b∈Ai holding. Furthermore, (a,b)∈Ai×Ai and (b,a)∈Ai×Ai hold obviously, which implies that (a,b)∈A₁×A₁∪A₂×A₂∪A₃×A₃∪……An×An and (b,a)∈A₁×A₁∪A₂×A₂∪A₃×A₃∪……An×An, i.e R is symmetric.
To sum up, R is compatible.

## 关系R的等价性（equivalent）

### 句式

……
R is reflexive.
……
R is symmetric.
……
R is transitive.
To sum up, R is equivalence relation.


## 偏序关系（partial order）

### 句式

……
R is reflexive.
……
R is antisymmetric.
……
R is transitive.
To sum up, R is partial order.


## 格（lattices）

### 句式

……
A is a poset.
……
∀ a,b∈A
x is the greatest lower bound of a and b.
……
y is the least upper bound of a and b.
To sum up, A is a lattice


### 例子

（1）a∨b=b，当且仅当a≤b
（2）a∧b=a，当且仅当a≤b

Proof：

1. =>
By the definition of LUB, we have a≤a∨b. Basing on the condition, it is clear that a∨b = b, i.e a≤b holds obviously.
<=
Since a≤b and b≤b, we have b is one of the upper bound of a and b. By the definition of LUB, we have a∨b≤b. However, a∨b is one of the upper bound of a and b, which implies b≤a∨b., i.e a∨b=b holds obviously.
2. =>
By the definition of GLB, we have a∧b≤b. Basing on the condition, it is clear that a∧b = a, i.e a≤b holds obviously.
<=
Since a≤a and a≤b, we have a is one of the lower bound of a and b. By the definition of GLB, we have a≤a∧b. However, a∧b is one of the lower bound of a and b, which suggests a∧b≤a., i.e a∧b=a holds obviously.
——————————————

Proof:
∀ a∈p（x），it is clear that a⊆a holds obviously, i.e ⊆ is reflexive.
Supposing a,b∈p（x）a⊆b and b⊆a, by the definition of ⊆, a=b holds, i.e ⊆ is antisymmetric.
Suppose that a,b,c⊆p（x）,a⊆b and b⊆c. By the definition of ⊆, it is clear that a⊆c, i.e is transitive.
To sum up, ⊆ is partial order reletion, p（x）is a poset.
∀ a,b∈p（x）, we have a∩b⊆a，and a∩b⊆b, which indicates that a∩b is a lower bound of a and b. Supposing c∈p（x）and c⊆a, c⊆b, we obtain c⊆a∩b, i.e a∩b is the greatest lower bound of a and b.
∀ a,b∈p（x）, we have a⊆a∪b and b⊆a∪b, which implies that a∪b is a upper bound of a and b. Supposing c∈p（x）and a⊆c, b⊆c, we obtain a∪b⊆c, i.e a∪b is the least upper bound of a and b.
To sum up, p（x）is a lattice.

### 引申

a∨b=b，当且仅当a≤b
a∧b=a，当且仅当a≤b

a∨a=a
a∧a=a

a∨b = b∨a
a∧b = b∧a

a∨(b∨c) = (a∨b)∨c
a∧(b∧c) = (a∧b)∧c

a∨(a∧b) = a
a∧(a∨b) = a

#### 例子

Proof:
y≤y∨(a∧y) 这一步有点取巧，为了凑出a，利用LUB性质
=(y∨a)∧(y∨y) 分配律展开
=(a∨y)∧y 幂等律
=(a∨x)∧y 题目条件
=(a∧y)∨(x∧y) 分配律展开
=(a∧x)∨(y∧x) 题目条件，交换律
=(a∨y)∧x 分配率提取x
=(a∨x)∧x 题目条件
≤ x GLB的性质

x≤x∨(a∧x) LUB的性质
=(x∨a)∧(x∨x) 分配率展开
=(y∨a)∧x 题目条件，幂等率
=(y∧x)∨(a∧x) 分配率展开
=(x∧y)∨(a∧y) 交换律，题目条件
=(a∨x)∧y 分配率提取y
=(a∨y)∧y 题目条件
≤y

To sum up, x=y holds.
——————————————————————————

（1）a = a * a
（2）a * b = b * a
（3）a * （b * c）=（a * b） * c

1、（A,≤）是一个偏序集。
2、∀ a,b ∈ A, a ∧ b = a * b

Proof:

1. ∀a∈A, by the condition, we have a * a = a ⇔ a ≤ a, which implies (a,a) ∈ R, i.e R is reflexive.
Supposing a,b∈A, a ≤ b and b ≤ a, by the condition, we obtain a = a * b and b = b * a.
Since * is commutative, a = a * b = b * a = b holds obviously, i.e R is antisymmetric.
Suppose that a,b,c ∈ A and a ≤ b, b ≤ c, which indicate a = a * b and b = b * c, i.e a = a * (b * c) hold obviously. Since * is associative, we have a = (a * b) * c = a * c. Basing on the definition, we have a ≤ c holds, i.e R is transitive.
To sum up, ≤ is partial order and (A,≤) is a poset.

2. Supposing a * b=a * b * b=(a * b) * b, by the condition we have a * b ≤ b. Similarly a * b=a * a * b=(a * b) * a, Basing on the condition we have a * b≤a. So a * b is a lower bound of a and b. Suppose that c ∈ A, c≤a and c≤b hold, which indicate that c=c * a and c=c * b hold clearly. Furthermore, c=(c * a) * b=c * (a * b) hold obviously. By the condition, c≤a * b hold, i.e a * b is the greatest lower bound of a and b.
To sum up, ∀ a,b ∈ A, a ∧ b = a * b holds.

# 群

## 二元运算（Binary operation）

### 句式

& is an everywhere defined function.
only one element of A is assigned to each ordered pair.


## 幺元（identity）逆元（inverse）

### 句式

For element e in A, ……
a*e=e*a=x, e is the identity of A

for each element x in A, there exists y, ……
x*y=y*x=e, A has the inverse.


## 半群（semigroup）

### 句式

A is a nonempty set.
……
& is a binary operation
……
& is associative
……
（A,&）is a semigroup


## 拟群（monoid）

### 句式

……
A is a semigroup
……
e is the indentity of A
To sum up, (A,&) is a monoid


## 群（group）

### 句式

……
A is a monoid
……
For each x∊A, y is the inverse of x
To sum up, (A,&) is a group


### 例子

（s₁,t₁）○’’（s₂,t₂）=（s₁○s₂ ,t₁○’t₂ ）

Proof
By the condition, it is clear that S×T is a nonempty set and ○’’ is a binary operation.
∀ s₁,s₂ ,s₃ ∈ S and t₁,t₂ ,t₃ ∈ T, we have
(s₁,t₁) ○’’ (s₂,t₂)○’’(s₃,t₃) = （s₁○s₂ ,t₁○’t₂ ）○’’ (s₃,t₃) = (s₁○s₂○s₃,t₁○’t₂○’t₃) and
(s₁,t₁) ○’’[ (s₂,t₂)○’’(s₃,t₃)] = (s₁,t₁) ○’’(s₂○s₃,t₂ ○’t₃) = (s₁○s₂○s₃,t₁○’t₂○’t₃) hold.
To sum up, ○’’ is associative, which implies（S×T，○’’） is a semigroup.
What is more, Since （S, ○ ）and（T, ○’ ）are groups, there must be two identity e₁∈S and e₂∈T, for each element s∈S and t∈T, making s ○ e₁ = e₁ ○ s = s and t ○’ e₂ = e₂ ○’ t = t hold.
By the condition, (s,t) ○’’ (e₁,e₂ ) = (s ○ e₁, t ○’ e₂ ) = (e₁ ○ s, e₂ ○’ t) = (s,t) holds obviously, i.e (e₁,e₂) is the identity of (S×T,○’’), which suggests (S×T,○’’) is a monoid.
Moreover, Since （S, ○ ）and（T, ○’ ）are groups, they should have inverses x,y for each element s∈S or t∈T making s○x = x○s = e₁ and y○’t = t○’y = e₂ hold.
Basing on the condition, (s,t) ○’’ (x,y) = (s ○ x,t ○’ y) = (x ○ s,y ○’ t) = (e₁,e₂) hold obviously, i.e for each (s,t) in S×T, (x,y) is inverse of (s,t).
To sum up, (S×T,○’’) is a group.

## 交换群（Abelian group）

### 句式

……
A is a group
……
& is commutative
A is a Abelian group


### 例子

Proof:
It is clear that Z is a nonempty set.
By the condition 0 is a everywhere defined function and only one element of A is assigned to each ordered pair.
Supposing a,b,c∈Z, and (a0b)0c = (a+b-2)0c = (a+b-2)+c-2=a+b+c-4 holds.
Moreover a0(b0c) = a0(b+c-2) = a+(b+c-2)-2 = a+b+c-4 holds obviously, **i.e 0 is associative, which indicates that (Z,0) is a semigroup. **What’s more, for each x,2∈Z, we have x02 = x+2-2 = x and 20x = 2+x-2 = x, i.e x02=20x=2, so 2 is the identity of A. which implies (Z,0) is a monoid.
∀ x∈Z, we have 4-x ∈Z, x0(4-x) = x+(4-x)-2 = 2 and (4-x)0x = (4-x)+x-2 = 2 hold obviously, i.e 4-x is the inverse of x for each x ∈ Z, which implies (Z,0) is a group.
∀ a,b∈Z, we have a0b = a+b-2 and b0a = b+a-2, i.e a0b = b0a, which suggests that 0 is commutative.
To sum up, (Z,0) is an Abelian group.

## 特别鸣谢

12-04

06-17 2536
09-13 1万+
07-12 244
03-05 5813
06-17 5494
10-29 776
02-03 1万+
05-10 2042
07-18 3310
05-15 920
10-27 756
12-17
03-18 1万+
02-22 5173
09-13 1351
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客