tf.argmax()解析

tf.argmax(input,axis)根据axis取值的不同返回每行或者每列最大值的索引。 这个很好理解,只是tf.argmax()的参数让人有些迷惑,比如,tf.argmax(array, 1)和tf.argmax(array, 0)有啥区别呢? 这里面就涉及到一个概念:axis。上面例子中的1和0就是axis。我先笼统的解释这个问题,设置axis的主要原因是方便我们进行多个维度的计算。

比如:

test = np.array([
[1, 2, 3],
 [2, 3, 4], 
 [5, 4, 3], 
 [8, 7, 2]])
np.argmax(test, 0)   #输出:array([3, 3, 1]
np.argmax(test, 1)   #输出:array([2, 2, 0, 0]
  • axis = 0:
      axis=0时比较每一列的元素,将每一列最大元素所在的索引记录下来,最后输出每一列最大元素所在的索引数组。
test[0] = array([1, 2, 3])
test[1] = array([2, 3, 4])
test[2] = array([5, 4, 3])
test[3] = array([8, 7, 2])
# output   :    [3, 3, 1]      
  • axis = 1:
      axis=1的时候,将每一行最大元素所在的索引记录下来,最后返回每一行最大元素所在的索引数组。
test[0] = array([1, 2, 3])  #2
test[1] = array([2, 3, 4])  #2
test[2] = array([5, 4, 3])  #0
test[3] = array([8, 7, 2])  #0

这是里面都是数组长度一致的情况,如果不一致,axis最大值为最小的数组长度-1,超过则报错。 当不一致的时候,axis=0的比较也就变成了每个数组的和的比较。
在这里插入图片描述
这个时候axis不能为1

  • 贴一下官方的例子
    在这里插入图片描述

参考文档
tf.argmax的使用
tf.argmax()以及axis解析

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值