机器学习
52C-S-D-N
这个作者很懒,什么都没留下…
展开
-
模型选择与特征选择
模型选择: 对备选的m个模型(A1,A2,A3,......Am),分别计算每个模型的误差(可以用所有样本训练误差或者K重交叉检验(k一般取10,k越大对数据的利用率越高) 得到的误差,总之用一种手段评判模型的好坏),然后选择其中最好的一个。特征选择: (1)前向搜原创 2015-01-28 17:32:43 · 518 阅读 · 0 评论 -
EM算法
EM算法(期望最大化算法):常用的聚类算法。 对于带标签数据,我们可以用最大似然估计求的每类数据的分布参数(假设已知分布),但对于混合在一起的无标签数据(如混合高斯模型), 由于不知道每个数据的类别,也就无法使用极大似然估计的方法。 这时我们可以使用EM算法来解决这个问题,假设数据来自r个类别{z(1),z(2),z(3),......z(r)}。则 (原创 2015-02-01 20:08:10 · 362 阅读 · 0 评论