- 博客(14)
- 收藏
- 关注
原创 EM算法
EM算法(期望最大化算法):常用的聚类算法。 对于带标签数据,我们可以用最大似然估计求的每类数据的分布参数(假设已知分布),但对于混合在一起的无标签数据(如混合高斯模型), 由于不知道每个数据的类别,也就无法使用极大似然估计的方法。 这时我们可以使用EM算法来解决这个问题,假设数据来自r个类别{z(1),z(2),z(3),......z(r)}。则 (
2015-02-01 20:08:10 362
原创 模型选择与特征选择
模型选择: 对备选的m个模型(A1,A2,A3,......Am),分别计算每个模型的误差(可以用所有样本训练误差或者K重交叉检验(k一般取10,k越大对数据的利用率越高) 得到的误差,总之用一种手段评判模型的好坏),然后选择其中最好的一个。特征选择: (1)前向搜
2015-01-28 17:32:43 518
原创 异常数据检测
异常数据检测,和噪声的去除在数据的分析与处理(如计算均值,分类,聚类等)中是非常重要的一步。原始数据若不进行异常点的剔除与去噪,则可能严重影响算法的结果。
2015-01-27 21:59:30 534
原创 条件数
条件数cond():矩阵的范数与矩阵的逆的范数是乘积;在方程 AX=b;中,若A的条件数比较大,则b的微小差异就可导致解X的很大变化,数值稳定性差(条件数反应了对误差的放大程度,条件数越小越好)。因此,对于条件数较大的线性方程组,不易直接求解X。
2015-01-19 17:38:25 858
原创 线性回归与复相关系数
线性回归分析与复相关系数。复相关:反应一个变量与一个向量的线性相关性强弱即的量。线性回归:反应一个变量与一个向量的关系。复相关,不要求变量与向量的分量之间有因果关系。线性回归,一般则要求变量与向量之间存在一定的因果关系。
2015-01-19 16:13:53 2126
原创 回归分析
回归分析:做完线性回归分析后还要检验回归方程的显著性。(即判断自变量和因变量之间是否真的存在因果关系,相当于检验参数贝塔是否为零向量。 还要检验,自变量的每个分量是否和因变量间存在因果关系,相当于
2015-01-19 16:00:16 737
原创 非参数检验
非参数检验的主要问题:(1)拟合优度检验(检验样本是否服从指定的分布类型和分布参数确定的分布)。 (2)分布一致性检验(又称齐次性检验)(检验两组样本是否来自同一总体,即两组样本的分布函数和分布参数是否相同)。 (3)独立性检验(检验多
2015-01-19 14:50:09 1748
原创 假设检验
假设检验:(1)提出原假设和备择假设 (2)构造检验统计量,并确定检验统计量的分布 (3)确定在给定置信度下,统计量的取值范围。 (3)由样本计算统计量的值,并与
2015-01-19 13:22:29 626
原创 参数估计
参数估计:在已知分布函数的情况下,估计函数中的待定参数。参数估计分为:点估计和区间估计。点估计方法主要有:矩估计和极大似然估计。极大似然估计:把参数当成已知量用字母表示,求出每个样本发生的概率,令似然函数为各个样本概率的乘积, 求出似然函数取最大值时对应的参数值(此参数即为参数的最大似然估计,求最大值时一般求似
2015-01-18 22:02:35 456
原创 典型相关分析
相关系数:描述两个随机变量间的线性相关性强弱的指标;复(全)相关系数:描述一个随机变量和一个随机向量间线性相关性强弱的指标; (将随机向量的各维进行线性组合得到一个随机变量,求两个随机变量间的相关系数, 取所有组合中相关系数的最大值,作为变量与向量的复(全)相
2015-01-18 21:05:57 845
原创 主成分分析
主成分分析(PCA):分析一个随机向量的中的主成分(主成分一般不是随机向量中的某一个分量,而是不同分量的线性组合,根据信息论的观点, 信息的多少与方差有关, 所以 主成分是方差最大的几个成分)。 主成分分析的方法是求随机向量的协方差矩阵(用样本协方差
2015-01-18 20:24:46 1093
原创 数据库概要
关系模式 关系关系实例E-R图实体集(弱实体集,强实体集),联系集,属性集,(主码,候选码,超码),概括,特殊化,聚集(将实体集与属性及实体集的联系作为一个实体集),关系模型选择,投影,命名,(并,交,差),笛卡尔积,模式分解:(1)无损连接(无信息丢失,适当的信息冗余),(2)保持所有函数依赖(Armstrong公理),(3)分解后的模式最好
2015-01-18 20:24:11 403
原创 方差分析
方差分析:(1)假定样本独立同分布 (2)假定误差差服从均值为零的正态分布 (3)假定各类别的变量方差相同 分析两组变量之间是否具有相同的均值。
2015-01-18 20:23:17 880
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人