自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 EM算法

EM算法(期望最大化算法):常用的聚类算法。    对于带标签数据,我们可以用最大似然估计求的每类数据的分布参数(假设已知分布),但对于混合在一起的无标签数据(如混合高斯模型),   由于不知道每个数据的类别,也就无法使用极大似然估计的方法。    这时我们可以使用EM算法来解决这个问题,假设数据来自r个类别{z(1),z(2),z(3),......z(r)}。则   (

2015-02-01 20:08:10 362

原创 模型选择与特征选择

模型选择:                  对备选的m个模型(A1,A2,A3,......Am),分别计算每个模型的误差(可以用所有样本训练误差或者K重交叉检验(k一般取10,k越大对数据的利用率越高)                  得到的误差,总之用一种手段评判模型的好坏),然后选择其中最好的一个。特征选择:                  (1)前向搜

2015-01-28 17:32:43 518

原创 异常数据检测

异常数据检测,和噪声的去除在数据的分析与处理(如计算均值,分类,聚类等)中是非常重要的一步。原始数据若不进行异常点的剔除与去噪,则可能严重影响算法的结果。

2015-01-27 21:59:30 534

原创 条件数

条件数cond():矩阵的范数与矩阵的逆的范数是乘积;在方程             AX=b;中,若A的条件数比较大,则b的微小差异就可导致解X的很大变化,数值稳定性差(条件数反应了对误差的放大程度,条件数越小越好)。因此,对于条件数较大的线性方程组,不易直接求解X。

2015-01-19 17:38:25 858

原创 线性回归与复相关系数

线性回归分析与复相关系数。复相关:反应一个变量与一个向量的线性相关性强弱即的量。线性回归:反应一个变量与一个向量的关系。复相关,不要求变量与向量的分量之间有因果关系。线性回归,一般则要求变量与向量之间存在一定的因果关系。

2015-01-19 16:13:53 2126

原创 回归分析

回归分析:做完线性回归分析后还要检验回归方程的显著性。(即判断自变量和因变量之间是否真的存在因果关系,相当于检验参数贝塔是否为零向量。                                                                                                     还要检验,自变量的每个分量是否和因变量间存在因果关系,相当于

2015-01-19 16:00:16 737

原创 非参数检验

非参数检验的主要问题:(1)拟合优度检验(检验样本是否服从指定的分布类型和分布参数确定的分布)。                                        (2)分布一致性检验(又称齐次性检验)(检验两组样本是否来自同一总体,即两组样本的分布函数和分布参数是否相同)。                                        (3)独立性检验(检验多

2015-01-19 14:50:09 1748

原创 假设检验

假设检验:(1)提出原假设和备择假设                  (2)构造检验统计量,并确定检验统计量的分布                  (3)确定在给定置信度下,统计量的取值范围。                  (3)由样本计算统计量的值,并与

2015-01-19 13:22:29 626

原创 参数估计

参数估计:在已知分布函数的情况下,估计函数中的待定参数。参数估计分为:点估计和区间估计。点估计方法主要有:矩估计和极大似然估计。极大似然估计:把参数当成已知量用字母表示,求出每个样本发生的概率,令似然函数为各个样本概率的乘积,                         求出似然函数取最大值时对应的参数值(此参数即为参数的最大似然估计,求最大值时一般求似

2015-01-18 22:02:35 456

原创 典型相关分析

相关系数:描述两个随机变量间的线性相关性强弱的指标;复(全)相关系数:描述一个随机变量和一个随机向量间线性相关性强弱的指标;                              (将随机向量的各维进行线性组合得到一个随机变量,求两个随机变量间的相关系数,                                取所有组合中相关系数的最大值,作为变量与向量的复(全)相

2015-01-18 21:05:57 845

原创 多项式,矩阵的高次幂运算

用分治法计算高次的幂运算如    X^n=X^(n/2)*X^(n/2)。

2015-01-18 20:27:31 3815

原创 主成分分析

主成分分析(PCA):分析一个随机向量的中的主成分(主成分一般不是随机向量中的某一个分量,而是不同分量的线性组合,根据信息论的观点,                                     信息的多少与方差有关, 所以 主成分是方差最大的几个成分)。                                    主成分分析的方法是求随机向量的协方差矩阵(用样本协方差

2015-01-18 20:24:46 1093

原创 数据库概要

关系模式  关系关系实例E-R图实体集(弱实体集,强实体集),联系集,属性集,(主码,候选码,超码),概括,特殊化,聚集(将实体集与属性及实体集的联系作为一个实体集),关系模型选择,投影,命名,(并,交,差),笛卡尔积,模式分解:(1)无损连接(无信息丢失,适当的信息冗余),(2)保持所有函数依赖(Armstrong公理),(3)分解后的模式最好

2015-01-18 20:24:11 403

原创 方差分析

方差分析:(1)假定样本独立同分布                  (2)假定误差差服从均值为零的正态分布                  (3)假定各类别的变量方差相同   分析两组变量之间是否具有相同的均值。

2015-01-18 20:23:17 880

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除